These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 7769617)

  • 1. Sequence characteristics of a cervid DNA repeat family.
    Qureshi SA; Blake RD
    J Mol Evol; 1995 Apr; 40(4):400-4. PubMed ID: 7769617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repetitive sequence families in Alces alces americana.
    Blake RD; Wang JZ; Beauregard L
    J Mol Evol; 1997 May; 44(5):509-20. PubMed ID: 9115175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher-order organization of subrepeats and the evolution of cervid satellite I DNA.
    Lee C; Court DR; Cho C; Haslett JL; Lin CC
    J Mol Evol; 1997 Mar; 44(3):327-35. PubMed ID: 9060399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families.
    Li YC; Lee C; Hseu TH; Li SY; Lin CC
    Cytogenet Cell Genet; 2000; 89(3-4):192-8. PubMed ID: 10965121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conservation of a 31-bp bovine subrepeat in centromeric satellite DNA monomers of Cervus elaphus and other cervid species.
    Lee C; Lin CC
    Chromosome Res; 1996 Sep; 4(6):427-35. PubMed ID: 8889241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal distribution and organization of three cervid satellite DNAs in Chinese water deer (Hydropotes inermis).
    Lin CC; Li YC
    Cytogenet Genome Res; 2006; 114(2):147-54. PubMed ID: 16825767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A satellite DNA element specific for roe deer (Capreolus capreolus).
    Buntjer JB; Nijman IJ; Zijlstra C; Lenstra JA
    Chromosoma; 1998 Mar; 107(1):1-5. PubMed ID: 9567196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of two families of satellite DNA with repetitive units of 135 bp and 2.5 kb in the ant Monomorium subopacum (Hymenoptera, Formicidae).
    Lorite P; Carrillo JA; Aguilar JA; Palomeque T
    Cytogenet Genome Res; 2004; 105(1):83-92. PubMed ID: 15218262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative structure and evolution of goat and sheep satellite I DNAs.
    Buckland RA
    Nucleic Acids Res; 1983 Mar; 11(5):1349-60. PubMed ID: 6298742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence and evolution of related bovine and caprine satellite DNAs. Identification of a short DNA sequence potentially involved in satellite DNA amplification.
    Buckland RA
    J Mol Biol; 1985 Nov; 186(1):25-30. PubMed ID: 4078901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content.
    Douzery E; Randi E
    Mol Biol Evol; 1997 Nov; 14(11):1154-66. PubMed ID: 9364773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary histories of highly repeated DNA families among the Artiodactyla (Mammalia).
    Modi WS; Gallagher DS; Womack JE
    J Mol Evol; 1996 Mar; 42(3):337-49. PubMed ID: 8661995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA insertions as a component of the evolution of unique satellite DNA families in two genera of parasitoid wasps: Diadromus and Eupelmus (Hymenoptera).
    Rojas-Rousse D; Bigot Y; Periquet G
    Mol Biol Evol; 1993 Mar; 10(2):383-96. PubMed ID: 8487637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Big game species identification by deoxyribonucleic acid (DNA) probes.
    Blackett RS; Keim P
    J Forensic Sci; 1992 Mar; 37(2):590-6. PubMed ID: 1500901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA.
    Polziehn RO; Strobeck C
    Mol Phylogenet Evol; 1998 Oct; 10(2):249-58. PubMed ID: 9878235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tribe-specific satellite DNA in non-domestic Bovidae.
    Kopecna O; Kubickova S; Cernohorska H; Cabelova K; Vahala J; Martinkova N; Rubes J
    Chromosome Res; 2014 Sep; 22(3):277-91. PubMed ID: 24452783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and recombination of bovine DNA repeats.
    Jobse C; Buntjer JB; Haagsma N; Breukelman HJ; Beintema JJ; Lenstra JA
    J Mol Evol; 1995 Sep; 41(3):277-83. PubMed ID: 7563113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The isolation and analysis of the highly repetitive DNA from the argali].
    Fedorova EV; Rogozin IB; Ptitsyn AA; Cheriaukene OV; Kaftanovskaia EM
    Tsitol Genet; 1998; 32(5):67-74. PubMed ID: 9879117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of a satellite DNA sequence (SATB) in the tilapiine and haplochromine genome (Pisces: Cichlidae).
    Franck JP; Wright JM
    Genome; 1993 Feb; 36(1):187-94. PubMed ID: 8458567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): evolutionary pathways and phylogenetic impact.
    Ciobanu D; Grechko VV; Darevsky IS; Kramerov DA
    J Exp Zool B Mol Dev Evol; 2004 Nov; 302(6):505-16. PubMed ID: 15390352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.