BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 776982)

  • 1. Oxidation of the carbanion intermediate of transaldolase by hexacyanoferrate (III).
    Christen P; Gasser A
    J Biol Chem; 1976 Jul; 251(14):4220-3. PubMed ID: 776982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of glycolate by oxidation of the 1,2-dihydroxyethyl-thamin-diphosphate intermediate of transketolase with hexacyanoferrate(III) or H2O2.
    Christen P; Gasser A
    Eur J Biochem; 1980; 107(1):73-7. PubMed ID: 6995116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific irreversible inhibition of enzymes concomitant to the oxidation of carbanionic enzyme-substrate intermediates by hexacyanoferrate (III).
    Christen P; Cogoli-Greuter M; Healy MJ; Lubini D
    Eur J Biochem; 1976 Mar; 63(1):223-31. PubMed ID: 770167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains.
    Sprenger GA; Schörken U; Sprenger G; Sahm H
    J Bacteriol; 1995 Oct; 177(20):5930-6. PubMed ID: 7592346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical trapping of complexes of dihydroxyacetone phosphate with muscle fructose-1,6-bisphosphate aldolase.
    Kuo DJ; Rose IA
    Biochemistry; 1985 Jul; 24(15):3947-52. PubMed ID: 4052377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Formation of nonphosphorylated sedoheptulose by the transaldolase reaction between fructose-6-phosphate and D-erythrose].
    PRANDINI BD; LOPES DO ROSARIO JA
    Boll Soc Ital Biol Sper; 1960 Nov; 36():1224-6. PubMed ID: 13737717
    [No Abstract]   [Full Text] [Related]  

  • 7. Irreversible inactivation of pyruvate decarboxylase in the presence of substrate and an oxidant. An example of paracatalytic enzyme inactivation.
    Cogoli-Greuter M; Hausner U; Christen P
    Eur J Biochem; 1979 Oct; 100(1):295-300. PubMed ID: 385313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fructose 1,6-diphosphate aldolase from rabbit muscle. Effect of pH on the rate of formation and on the equilibrium concentration of the carbanion intermediate.
    Grazi E
    Biochem J; 1975 Oct; 151(1):167-72. PubMed ID: 2160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.
    Sautner V; Friedrich MM; Lehwess-Litzmann A; Tittmann K
    Biochemistry; 2015 Jul; 54(29):4475-86. PubMed ID: 26131847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.
    Williams JF; Blackmore PF
    Int J Biochem; 1983; 15(6):797-816. PubMed ID: 6862092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transaldolase: from biochemistry to human disease.
    Samland AK; Sprenger GA
    Int J Biochem Cell Biol; 2009 Jul; 41(7):1482-94. PubMed ID: 19401148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the reduced Schiff-base intermediate complex of transaldolase B from Escherichia coli: mechanistic implications for class I aldolases.
    Jia J; Schörken U; Lindqvist Y; Sprenger GA; Schneider G
    Protein Sci; 1997 Jan; 6(1):119-24. PubMed ID: 9007983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role.
    Weinhouse H; Benziman M
    J Bacteriol; 1976 Aug; 127(2):747-54. PubMed ID: 956117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate.
    Choi KH; Shi J; Hopkins CE; Tolan DR; Allen KN
    Biochemistry; 2001 Nov; 40(46):13868-75. PubMed ID: 11705376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THE COUPLED REACTION CATALYZED BY THE ENZYMES TRANSKETOLASE AND TRANSALDOLASE. II. REACTION OF ERYTHROSE 4-PHOSPHATE AND THE TRANSALDOLASE-DIHYDROXYACETONE COMPLEX.
    HORECKER BL; CHENG T; PONTREMOLI S
    J Biol Chem; 1963 Oct; 238():3428-31. PubMed ID: 14085398
    [No Abstract]   [Full Text] [Related]  

  • 16. Transaldolase B: trapping of Schiff base intermediate between dihydroxyacetone and epsilon-amino group of active-site lysine residue by borohydride reduction.
    Schneider G; Sprenger GA
    Methods Enzymol; 2002; 354():197-201. PubMed ID: 12418227
    [No Abstract]   [Full Text] [Related]  

  • 17. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data.
    Tittmann K
    Bioorg Chem; 2014 Dec; 57():263-280. PubMed ID: 25267444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by fructose 1,6-bisphosphate of transaldolase from Escherichia coli.
    Ogawa T; Murakami K; Yoshino M
    FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide radical initiates the autoxidation of dihydroxyacetone.
    Mashino T; Fridovich I
    Arch Biochem Biophys; 1987 May; 254(2):547-51. PubMed ID: 3034165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proton exchange of the pro-S hydrogen atom at C-1 in dihydroxyacetone phosphate and D-fructose 1,6-bisphosphate catalysed by class-I and class-II aldolases.
    Galdes A; Hill HA
    Biochem J; 1978 Jun; 171(3):539-42. PubMed ID: 352341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.