These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7771768)

  • 81. Control of metabolic flux through the quinate pathway in Aspergillus nidulans.
    Wheeler KA; Lamb HK; Hawkins AR
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):195-205. PubMed ID: 8670107
    [TBL] [Abstract][Full Text] [Related]  

  • 82. L-arabonate and D-galactonate production by expressing a versatile sugar dehydrogenase in metabolically engineered Escherichia coli.
    Liu H; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Chung WJ
    Bioresour Technol; 2014 May; 159():455-9. PubMed ID: 24713235
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Intracellular pH responses in the industrially important fungus Trichoderma reesei.
    Valkonen M; Penttilä M; Benčina M
    Fungal Genet Biol; 2014 Sep; 70():86-93. PubMed ID: 25046860
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Hydrolytic cleavage of purine ribonucleosides by extracts of Aspergillus terricola.
    Abu-Shady MR; Elshafei AM; el-Beih FM; Mohamed LA
    Acta Microbiol Pol; 1994; 43(3-4):297-304. PubMed ID: 7740979
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Redesigning Aldolase Stereoselectivity by Homologous Grafting.
    Bisterfeld C; Classen T; Küberl I; Henßen B; Metz A; Gohlke H; Pietruszka J
    PLoS One; 2016; 11(6):e0156525. PubMed ID: 27327271
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The DeLey-Doudoroff Pathway of Galactose Metabolism in Azotobacter vinelandii.
    Wong TY; Yao XT
    Appl Environ Microbiol; 1994 Jun; 60(6):2065-8. PubMed ID: 16349292
    [TBL] [Abstract][Full Text] [Related]  

  • 87. New pathway for nonphosphorylated degradation of gluconate by Aspergillus niger.
    Elzainy TA; Hassan MM; Allam AM
    J Bacteriol; 1973 Apr; 114(1):457-9. PubMed ID: 4698214
    [TBL] [Abstract][Full Text] [Related]  

  • 88. D-galactonate metabolism in enteric bacteria: a molecular and physiological perspective.
    Singh S; Gola C; Singh B; Agrawal V; Chaba R
    Curr Opin Microbiol; 2024 Oct; 81():102524. PubMed ID: 39137493
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Characterization of alditol oxidase from Streptomyces coelicolor and its application in the production of rare sugars.
    Chen Z; Li Z; Li F; Wang N; Gao XD
    Bioorg Med Chem; 2020 May; 28(10):115464. PubMed ID: 32249029
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A colorimetric assay for the screening and kinetic analysis of nucleotide sugar 4,6-dehydratases.
    Vogel U; Beerens K; Desmet T
    Anal Biochem; 2022 Oct; 655():114870. PubMed ID: 36027972
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Investigating the physiological roles of low-efficiency D-mannonate and D-gluconate dehydratases in the enolase superfamily: pathways for the catabolism of L-gulonate and L-idonate.
    Wichelecki DJ; Vendiola JA; Jones AM; Al-Obaidi N; Almo SC; Gerlt JA
    Biochemistry; 2014 Sep; 53(35):5692-9. PubMed ID: 25145794
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An artificial multienzyme cascade for the whole-cell synthesis of rare ketoses from glycerol.
    Gao Y; Li F; Wang Y; Chen Z; Li Z
    Biotechnol Lett; 2023 Oct; 45(10):1355-1364. PubMed ID: 37486554
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Dissimilation of methionine by a demethiolase of Aspergillus species.
    Ruiz-Herrera J; Starkey RL
    J Bacteriol; 1969 Sep; 99(3):764-70. PubMed ID: 5370277
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Functional characterization of a new 3-dehydroshikimate dehydratase from Eupenicillium parvum and its potential for protocatechuic acid production.
    Wei K; Long L; Lin Q; Ding S
    Biosci Biotechnol Biochem; 2022 Jul; 86(8):1024-1030. PubMed ID: 35612974
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Factors affecting D-galactonate degradation by extracts of Aspergillus niger.
    Elshafei AM; Abdel-Fatah OM
    J Basic Microbiol; 2001; 41(3-4):149-58. PubMed ID: 11512447
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Pathway for D-galactonate catabolism in nonpathogenic mycobacteria.
    Szumiło T
    J Bacteriol; 1981 Oct; 148(1):368-70. PubMed ID: 7287628
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Separation and some properties of D-galactonate pathway enzymes from Mycobacterium sp. 607.
    Szumiło T
    Acta Microbiol Pol; 1983; 32(1):47-52. PubMed ID: 6194665
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Catabolism of 2-keto-3-deoxy-galactonate and the production of its enantiomers.
    Yun EJ; Lee SH; Kim S; Ryu HS; Kim KH
    Appl Microbiol Biotechnol; 2024 Jul; 108(1):403. PubMed ID: 38954014
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Properties of enzymes involved in D-galactonate catabolism in fungi.
    Elshafei AM; Mohawed SM; Ammar MS; Abdel-Fatah OM
    Antonie Van Leeuwenhoek; 1995; 67(2):211-6. PubMed ID: 7771768
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.