BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7771858)

  • 21. Mechanical stresses on vessels and the non-uniform distribution of atherosclerosis.
    Glagov S
    Med Clin North Am; 1973 Jan; 57(1):63-77. PubMed ID: 4569833
    [No Abstract]   [Full Text] [Related]  

  • 22. Wall shear stress and early atherosclerosis: a review.
    Shaaban AM; Duerinckx AJ
    AJR Am J Roentgenol; 2000 Jun; 174(6):1657-65. PubMed ID: 10845502
    [No Abstract]   [Full Text] [Related]  

  • 23. Characteristic change in local pulse wave velocity in different segments of the atherosclerotic aorta in KHC rabbits.
    Katsuda S; Miyashita H; Hasegawa M; Machida N; Kusanagi M; Yamasaki M; Waki H; Hazama A
    Am J Hypertens; 2004 Feb; 17(2):181-7. PubMed ID: 14751662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow parameters in normal left coronary artery tree. Implication to atherogenesis.
    Soulis JV; Giannoglou GD; Parcharidis GE; Louridas GE
    Comput Biol Med; 2007 May; 37(5):628-36. PubMed ID: 16920094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of arterial compliance in patients with carotid arterial atherosclerosis.
    Lin WW; Chen YT; Hwang DS; Ting CT; Wang KY; Lin CJ
    Zhonghua Yi Xue Za Zhi (Taipei); 1999 Sep; 62(9):598-604. PubMed ID: 10502850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow-dependent concentration polarization of plasma proteins at the luminal surface of a cultured endothelial cell monolayer.
    Naiki T; Sugiyama H; Tashiro R; Karino T
    Biorheology; 1999; 36(3):225-41. PubMed ID: 10690270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shear stress in atherosclerosis, and vascular remodelling.
    Krams R; Wentzel JJ; Oomen JA; Schuurbiers JC; Andhyiswara I; Kloet J; Post M; de Smet B; Borst C; Slager CJ; Serruys PW
    Semin Interv Cardiol; 1998 Mar; 3(1):39-44. PubMed ID: 10094183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atherosclerosis in the human common carotid artery. A morphometric study of 31 specimens.
    Goubergrits L; Affeld K; Fernandez-Britto J; Falcon L
    Pathol Res Pract; 2001; 197(12):803-9. PubMed ID: 11795827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atherosclerosis and its evolution in childhood.
    Berenson GS; Srinivasan SR; Freedman DS; Radhakrishnamurthy B; Dalferes ER
    Am J Med Sci; 1987 Dec; 294(6):429-40. PubMed ID: 3321985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryodamage of the vessel wall accelerates the development of atherosclerotic lesions in arterial vessels of Watanabe hyperlipidemic rabbits.
    Aliev G; Ragazzi E; Cirillo R; Bevilacqua C; Mironov A; Prosdocimi M; Paro M
    J Submicrosc Cytol Pathol; 1998 Jul; 30(3):417-23. PubMed ID: 9723203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiopharmacological approach to mechanical factors of hypertension in the atherosclerotic process.
    Simon AC; Pithois-Merli I; Levenson J
    J Hum Hypertens; 1991 Aug; 5 Suppl 1():15-21. PubMed ID: 1941880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Atherosclerotic lesions. Natural history, risk factors, and topography.
    Strong JP
    Arch Pathol Lab Med; 1992 Dec; 116(12):1268-75. PubMed ID: 1456871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wall pressure gradient in normal left coronary artery tree.
    Giannoglou GD; Soulis JV; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Med Eng Phys; 2005 Jul; 27(6):455-64. PubMed ID: 15990062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elastodynamics and arterial wall stress.
    Humphrey JD; Na S
    Ann Biomed Eng; 2002 Apr; 30(4):509-23. PubMed ID: 12086002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interrelation between the extent of atherosclerosis in the thoracic aorta, carotid intima-media thickness and the extent of coronary artery disease.
    Rohani M; Jogestrand T; Ekberg M; van der Linden J; Källner G; Jussila R; Agewall S
    Atherosclerosis; 2005 Apr; 179(2):311-6. PubMed ID: 15777547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation.
    Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD
    Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visualization of flow-dependent concentration polarization of macromolecules at the surface of a cultured endothelial cell monolayer by means of fluorescence microscopy.
    Naiki T; Karino T
    Biorheology; 2000; 37(5-6):371-84. PubMed ID: 11204543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The freedom from atherosclerosis of intramyocardial coronary arteries: reduction of mural stress--a key factor.
    Robicsek F; Thubrikar MJ
    Eur J Cardiothorac Surg; 1994; 8(5):228-35. PubMed ID: 8043283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Change in endothelial cell morphology at arterial branch sites caused by a reduction of intramural stress.
    Baker JW; Thubrikar MJ; Parekh JS; Forbes MS; Nolan SP
    Atherosclerosis; 1991 Aug; 89(2-3):209-21. PubMed ID: 1793449
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.