BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 7772665)

  • 1. In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles.
    Bergsma JE; Rozema FR; Bos RR; Boering G; de Bruijn WC; Pennings AJ
    Biomaterials; 1995 Mar; 16(4):267-74. PubMed ID: 7772665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of high molecular weight poly(L-lactide) in alkaline medium.
    Cam D; Hyon SH; Ikada Y
    Biomaterials; 1995 Jul; 16(11):833-43. PubMed ID: 8527598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility study of as-polymerized poly(L-lactide) in rats using a cage implant system.
    Bergsma JE; Rozema FR; Bos RR; Boering G; de Bruijn WC; Pennings AJ
    J Biomed Mater Res; 1995 Feb; 29(2):173-9. PubMed ID: 7738063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Late degradation tissue response to poly(L-lactide) bone plates and screws.
    Bergsma JE; de Bruijn WC; Rozema FR; Bos RR; Boering G
    Biomaterials; 1995 Jan; 16(1):25-31. PubMed ID: 7718688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of phagocytosis of poly(L-lactic acid) fragments on cellular morphology and viability.
    Lam KH; Schakenraad JM; Esselbrugge H; Feijen J; Nieuwenhuis P
    J Biomed Mater Res; 1993 Dec; 27(12):1569-77. PubMed ID: 8113245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-vivo degradation of poly(lactic acid) of different molecular weights.
    Chawla AS; Chang TM
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):153-62. PubMed ID: 3841816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures.
    Bergsma EJ; Rozema FR; Bos RR; de Bruijn WC
    J Oral Maxillofac Surg; 1993 Jun; 51(6):666-70. PubMed ID: 8492205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue response to partially in vitro predegraded poly-L-lactide implants.
    De Jong WH; Eelco Bergsma J; Robinson JE; Bos RR
    Biomaterials; 2005 May; 26(14):1781-91. PubMed ID: 15576152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resorbable materials of poly(L-lactide). VII. In vivo and in vitro degradation.
    Leenslag JW; Pennings AJ; Bos RR; Rozema FR; Boering G
    Biomaterials; 1987 Jul; 8(4):311-4. PubMed ID: 3663810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of polydispersed poly(L-lactic acid) to modulate lactic acid release.
    von Recum HA; Cleek RL; Eskin SG; Mikos AG
    Biomaterials; 1995 Apr; 16(6):441-7. PubMed ID: 7654870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 5-year in vitro and in vivo study of the biodegradation of polylactide plates.
    Suuronen R; Pohjonen T; Hietanen J; Lindqvist C
    J Oral Maxillofac Surg; 1998 May; 56(5):604-14; discussion 614-5. PubMed ID: 9590343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of and tissue reaction to biodegradable poly(L-lactide) for use as internal fixation of fractures: a study in rats.
    Bos RR; Rozema FR; Boering G; Nijenhuis AJ; Pennings AJ; Verwey AB; Nieuwenhuis P; Jansen HW
    Biomaterials; 1991 Jan; 12(1):32-6. PubMed ID: 2009343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradative behaviour of polymeric matrices in (sub)dermal and muscle tissue of the rat: a quantitative study.
    Beumer GJ; van Blitterswijk CA; Ponec M
    Biomaterials; 1994 Jun; 15(7):551-9. PubMed ID: 7918908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable osteosynthesis material for stabilization of midface fractures: experimental investigation in sheep.
    Bähr W; Stricker A; Gutwald R; Wellens E
    J Craniomaxillofac Surg; 1999 Feb; 27(1):51-7. PubMed ID: 10188128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(L-lactide): a long-term degradation study in vivo. Part III. Analytical characterization.
    Pistner H; Bendix DR; Mühling J; Reuther JF
    Biomaterials; 1993; 14(4):291-8. PubMed ID: 8476999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced biocompatibility and wound healing properties of biodegradable polymer-modified allyl 2-cyanoacrylate tissue adhesive.
    Lee YJ; Son HS; Jung GB; Kim JH; Choi S; Lee GJ; Park HK
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():43-50. PubMed ID: 25842106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence.
    Grizzi I; Garreau H; Li S; Vert M
    Biomaterials; 1995 Mar; 16(4):305-11. PubMed ID: 7772670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The burst phenomenon, an animal model simulating the long-term tissue response on PLLA interlocking nails.
    van der Elst M; Kuiper I; Klein CP; Patka P; Haarman HJ
    J Biomed Mater Res; 1996 Feb; 30(2):139-43. PubMed ID: 9019477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.