These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 7773193)
1. Investigation of the effects of Zn2+ and Cu2+ on the K+ transport in yeast mitochondria. Evidences for the involvement of a Zn(2+)-binding protein in the K+/H+ exchange. Manon S; Guérin M Biochem Mol Biol Int; 1995 Mar; 35(3):585-93. PubMed ID: 7773193 [TBL] [Abstract][Full Text] [Related]
2. Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Wudarczyk J; Debska G; Lenartowicz E Arch Biochem Biophys; 1999 Mar; 363(1):1-8. PubMed ID: 10049493 [TBL] [Abstract][Full Text] [Related]
3. [Potassium transport in yeast]. López R; Peña A Rev Latinoam Microbiol; 1999; 41(2):91-103. PubMed ID: 10970213 [TBL] [Abstract][Full Text] [Related]
4. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium. Trchounian A; Ohanjayan E; Zakharyan E Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260 [TBL] [Abstract][Full Text] [Related]
5. Copper effects on ion transport across lamprey erythrocyte membrane: Cl(-)/OH(-) exchange induced by cuprous ions. Bogdanova AY; Virkki LV; Gusev GP; Nikinmaa M Toxicol Appl Pharmacol; 1999 Sep; 159(3):204-13. PubMed ID: 10486307 [TBL] [Abstract][Full Text] [Related]
6. Binding of zinc(II) and copper(II) to the full-length Alzheimer's amyloid-beta peptide. Tõugu V; Karafin A; Palumaa P J Neurochem; 2008 Mar; 104(5):1249-59. PubMed ID: 18289347 [TBL] [Abstract][Full Text] [Related]
7. Effect of alloxan on phosphate transport in isolated mouse liver mitochondria: influence of pH, and differentiation between influx and efflux of phosphate. Boquist L; Nelson L Diabete Metab; 1982 Jun; 8(2):121-7. PubMed ID: 6213435 [TBL] [Abstract][Full Text] [Related]
8. On the regulation of Na+/H+ and K+/H+ antiport in yeast mitochondria: evidence for the absence of an Na(+)-selective Na+/H+ antiporter. Welihinda AA; Trumbly RJ; Garlid KD; Beavis AD Biochim Biophys Acta; 1993 Oct; 1144(3):367-73. PubMed ID: 8399283 [TBL] [Abstract][Full Text] [Related]
9. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Nowikovsky K; Reipert S; Devenish RJ; Schweyen RJ Cell Death Differ; 2007 Sep; 14(9):1647-56. PubMed ID: 17541427 [TBL] [Abstract][Full Text] [Related]
10. Phosphate carrier of liver mitochondria: the reaction of its SH groups with mersalyl, 5,5'-dithio-bis-nitrobenzoate, and N-ethylmaleimide and the modulation of reactivity by the energy state of the mitochondria. Fonyo A; Vignais PV J Bioenerg Biomembr; 1980 Aug; 12(3-4):137-49. PubMed ID: 7217038 [TBL] [Abstract][Full Text] [Related]
11. Imidazolate bridged Cu(II)-Cu(II) and Cu(II)-Zn(II) complexes of a terpyridinophane azamacrocycle: a solution and solid state study. Verdejo B; Blasco S; García-España E; Lloret F; Gaviña P; Soriano C; Tatay S; Jiménez HR; Doménech A; Latorre J Dalton Trans; 2007 Nov; (41):4726-37. PubMed ID: 17940655 [TBL] [Abstract][Full Text] [Related]
13. Proton cycling through the mitochondrial phosphate transporter in energy transduction. Fonyó A; Ligeti E; Lukács G Prog Clin Biol Res; 1982; 102 Pt B():409-22. PubMed ID: 7163178 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial phosphate transport. N-ethylmaleimide insensitivity correlates with absence of beef heart-like Cys42 from the Saccharomyces cerevisiae phosphate transport protein. Guérin B; Bukusoglu C; Rakotomanana F; Wohlrab H J Biol Chem; 1990 Nov; 265(32):19736-41. PubMed ID: 2246257 [TBL] [Abstract][Full Text] [Related]
15. Cu2+-effects on mitochondrial resistance to sodium deoxycholate. Ivancheva E Acta Physiol Pharmacol Bulg; 1978; 4(3):71-8. PubMed ID: 751453 [TBL] [Abstract][Full Text] [Related]
16. [Analysis of the binding site of copper with intact and Escherichia coli bacteria modified by N-ethylmaleimide by ESR]. Lebedev VS; Volodina LA; Fedorov IuI Biofizika; 1991; 36(1):91-6. PubMed ID: 1649641 [TBL] [Abstract][Full Text] [Related]
17. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
18. [Effect of antibodies against mitochondrial K+-transporting protein on K+ transport in rat liver mitochondria]. Skarga IuIu; Dolgacheva LP; Fedotcheva NI; Mironova GD Ukr Biokhim Zh (1978); 1987; 59(6):54-9. PubMed ID: 3124317 [TBL] [Abstract][Full Text] [Related]
19. Identification of residues critical for Cu2+-mediated inhibition of glycine alpha1 receptors. Chen Z; Dillon GH; Huang R Neuropharmacology; 2006 Sep; 51(4):701-8. PubMed ID: 16842826 [TBL] [Abstract][Full Text] [Related]
20. Comparison of effects of mersalyl & N-ethyl maleimide on mitochondrial K+ flux. Diwan JJ; Markoff M; Lehrer PH Indian J Biochem Biophys; 1977 Dec; 14(4):342-6. PubMed ID: 27451 [No Abstract] [Full Text] [Related] [Next] [New Search]