These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7774126)

  • 1. [Visual information processing in humans].
    Tobimatsu S
    Rinsho Shinkeigaku; 1994 Dec; 34(12):1250-2. PubMed ID: 7774126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and function of parallel pathways in the primate early visual system.
    Callaway EM
    J Physiol; 2005 Jul; 566(Pt 1):13-9. PubMed ID: 15905213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: correlations with patterns of cytochrome oxidase.
    Lachica EA; Beck PD; Casagrande VA
    J Comp Neurol; 1993 Mar; 329(2):163-87. PubMed ID: 8384222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurochemical comparison of synaptic arrangements of parvocellular, magnocellular, and koniocellular geniculate pathways in owl monkey (Aotus trivirgatus) visual cortex.
    Shostak Y; Ding Y; Casagrande VA
    J Comp Neurol; 2003 Jan; 456(1):12-28. PubMed ID: 12508310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component.
    Foxe JJ; Strugstad EC; Sehatpour P; Molholm S; Pasieka W; Schroeder CE; McCourt ME
    Brain Topogr; 2008 Sep; 21(1):11-21. PubMed ID: 18784997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organization of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus).
    Ichida JM; Casagrande VA
    J Comp Neurol; 2002 Dec; 454(3):272-83. PubMed ID: 12442318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional cell classes and functional architecture in the early visual system of a highly visual rodent.
    Van Hooser SD; Heimel JA; Nelson SB
    Prog Brain Res; 2005; 149():127-45. PubMed ID: 16226581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Transient and steady-state electroretinograms and visual evoked potentials to pattern and uniform-field stimulation in humans].
    Nakayama M
    Fukuoka Igaku Zasshi; 1994 Jul; 85(7):225-34. PubMed ID: 8070753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the impact of attention and motor planning on the lateral geniculate nucleus.
    Casagrande VA; Sáry G; Royal D; Ruiz O
    Prog Brain Res; 2005; 149():11-29. PubMed ID: 16226573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system.
    Langrová J; Kuba M; Kremlácek J; Kubová Z; Vít F
    Vision Res; 2006 Feb; 46(4):536-44. PubMed ID: 16083936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evolutionary scaling law for the primate visual system and its basis in cortical function.
    Stevens CF
    Nature; 2001 May; 411(6834):193-5. PubMed ID: 11346795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint entropy loci of M and P cells: a hypothesis for parallel processing in the primate visual system.
    Silveira LC
    Rev Bras Biol; 1996 Dec; 56 Su 1 Pt 2():345-67. PubMed ID: 9394513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structure and evolution of primate primary visual cortex.
    Bush EC; Allman JM
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Nov; 281(1):1088-94. PubMed ID: 15470669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinotopic distribution of chromatic responses in human primary visual cortex.
    Vanni S; Henriksson L; Viikari M; James AC
    Eur J Neurosci; 2006 Sep; 24(6):1821-31. PubMed ID: 17004945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vision: a multimodal sense.
    Sadun AA
    Bull Clin Neurosci; 1985; 50():61-8. PubMed ID: 3842087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of human visual pathophysiology with visual evoked potentials.
    Tobimatsu S; Celesia GG
    Clin Neurophysiol; 2006 Jul; 117(7):1414-33. PubMed ID: 16516551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual thalamocortical projections in the flying fox: parallel pathways to striate and extrastriate areas.
    Manger PR; Rosa MG
    Neuroscience; 2005; 130(2):497-511. PubMed ID: 15664706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical implications of parallel visual pathways.
    Bassi CJ; Lehmkuhle S
    J Am Optom Assoc; 1990 Feb; 61(2):98-110. PubMed ID: 2179386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of neurofilament proteins in the lateral geniculate nucleus, primary visual cortex, and area MT of adult Cebus monkeys.
    Soares JG; Rosado De Castro PH; Fiorani M; Nascimento-Silva S; Gattass R
    J Comp Neurol; 2008 Jun; 508(4):605-14. PubMed ID: 18383052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial coding and response redundancy in parallel visual pathways of the marmoset Callithrix jacchus.
    Forte JD; Hashemi-Nezhad M; Dobbie WJ; Dreher B; Martin PR
    Vis Neurosci; 2005; 22(4):479-91. PubMed ID: 16212705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.