BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 7774567)

  • 1. Application of fluorescence in situ hybridization in genome analysis of the mouse.
    Matsuda Y; Chapman VM
    Electrophoresis; 1995 Feb; 16(2):261-72. PubMed ID: 7774567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution fluorescence in situ hybridization: a new approach in genome mapping.
    Palotie A; Heiskanen M; Laan M; Horelli-Kuitunen N
    Ann Med; 1996 Apr; 28(2):101-6. PubMed ID: 8732637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interspecific backcrosses provide an important new tool for centromere mapping of mouse chromosomes.
    Ceci JD; Matsuda Y; Grubber JM; Jenkins NA; Copeland NG; Chapman VM
    Genomics; 1994 Feb; 19(3):515-24. PubMed ID: 8188294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Extending the capabilities of human chromosome analysis: from high-resolution banding to chromatin fiber-FISH].
    Ikeuchi T
    Hum Cell; 1997 Jun; 10(2):121-34. PubMed ID: 9390269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinterpretation of G-banded complex karyotypes by fluorescence in situ hybridization with chromosome-specific DNA painting probes and alpha-satellite centromere-specific DNA probes in malignant hematological disorders.
    Shi G; Weh HJ; Hossfeld DK
    Am J Hematol; 1997 Jun; 55(2):69-76. PubMed ID: 9209001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal mapping of mouse 5S rRNA genes by direct R-banding fluorescence in situ hybridization.
    Matsuda Y; Moriwaki K; Chapman VM; Hoi-Sen Y; Akbarzadeh J; Suzuki H
    Cytogenet Cell Genet; 1994; 66(4):246-9. PubMed ID: 8162702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Karyotypes and Distribution of Tandem Repeat Sequences in Brassica nigra Determined by Fluorescence in situ Hybridization.
    Wang GX; He QY; Macas J; Novák P; Neumann P; Meng DX; Zhao H; Guo N; Han S; Zong M; Jin WW; Liu F
    Cytogenet Genome Res; 2017; 152(3):158-165. PubMed ID: 28810257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping and chromosome analysis: the potential of fluorescence in situ hybridization.
    Joos S; Fink TM; Rätsch A; Lichter P
    J Biotechnol; 1994 Jun; 35(2-3):135-53. PubMed ID: 7765054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of FISH techniques for physical mapping in the dog (Canis familiaris).
    Fischer PE; Holmes NG; Dickens HF; Thomas R; Binns MM; Nacheva EP
    Mamm Genome; 1996 Jan; 7(1):37-41. PubMed ID: 8903726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ analysis of centromere segregation in C57BL/6 x Mus spretus interspecific backcrosses.
    Matsuda Y; Manly KF; Chapman VM
    Mamm Genome; 1993 Sep; 4(9):475-80. PubMed ID: 8118097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for detecting pericentric inversions using COD-FISH.
    Bailey SM; Meyne J; Cornforth MN; McConnell TS; Goodwin EH
    Cytogenet Cell Genet; 1996; 75(4):248-53. PubMed ID: 9067435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicolor FISH probe sets and their applications.
    Liehr T; Starke H; Weise A; Lehrer H; Claussen U
    Histol Histopathol; 2004 Jan; 19(1):229-37. PubMed ID: 14702191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid physical mapping of cloned DNA on banded mouse chromosomes by fluorescence in situ hybridization.
    Boyle AL; Feltquite DM; Dracopoli NC; Housman DE; Ward DC
    Genomics; 1992 Jan; 12(1):106-15. PubMed ID: 1733847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes.
    Durm M; Haar FM; Hausmann M; Ludwig H; Cremer C
    Z Naturforsch C J Biosci; 1996; 51(3-4):253-61. PubMed ID: 8639232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Q-banding and fluorescence in situ hybridization for the identification of bovine chromosomes 1 to 7.
    Solinas-Toldo S; Mezzelani A; Hawkins GA; Bishop MD; Olsaker I; Mackinlay A; Ferretti L; Fries R
    Cytogenet Cell Genet; 1995; 69(1-2):1-6. PubMed ID: 7835074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centromere-specific multicolour fluorescence in situ hybridization on human spermatocyte I and II metaphases.
    Uroz L; Liehr T; Mrasek K; Templado C
    Hum Reprod; 2009 Aug; 24(8):2029-33. PubMed ID: 19380386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of the tandem repeat sequences and karyotyping in cucumber (Cucumis sativus L.) by fluorescence in situ hybridization.
    Han YH; Zhang ZH; Liu JH; Lu JY; Huang SW; Jin WW
    Cytogenet Genome Res; 2008; 122(1):80-8. PubMed ID: 18931490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicolor fluorescence in situ hybridization (FISH) applied to FISH-banding.
    Liehr T; Starke H; Heller A; Kosyakova N; Mrasek K; Gross M; Karst C; Steinhaeuser U; Hunstig F; Fickelscher I; Kuechler A; Trifonov V; Romanenko SA; Weise A
    Cytogenet Genome Res; 2006; 114(3-4):240-4. PubMed ID: 16954660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicolor chromosome bar codes.
    Müller S; Wienberg J
    Cytogenet Genome Res; 2006; 114(3-4):245-9. PubMed ID: 16954661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location of the mouse complement factor H gene (cfh) by FISH analysis and replication R-banding.
    Matsuda Y; Harada YN; Natsuume-Sakai S; Lee K; Shiomi T; Chapman VM
    Cytogenet Cell Genet; 1992; 61(4):282-5. PubMed ID: 1486806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.