BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 7774597)

  • 21. The COOH terminus of suppressor of stem loop (SSL2/RAD25) in yeast is essential for overall genomic excision repair and transcription-coupled repair.
    Sweder KS; Hanawalt PC
    J Biol Chem; 1994 Jan; 269(3):1852-7. PubMed ID: 8294433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a UV endonuclease gene from the fission yeast Schizosaccharomyces pombe and its bacterial homolog.
    Takao M; Yonemasu R; Yamamoto K; Yasui A
    Nucleic Acids Res; 1996 Apr; 24(7):1267-71. PubMed ID: 8614629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The induction and repair of (6-4) photoproducts in Neurospora crassa.
    Baker TI; Radloff RJ; Cords CE; Engel SR; Mitchell DL
    Mutat Res; 1991 Nov; 255(3):211-8. PubMed ID: 1719392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1.
    Liu Z; Hossain GS; Islas-Osuna MA; Mitchell DL; Mount DW
    Plant J; 2000 Mar; 21(6):519-28. PubMed ID: 10758502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Neurospora crassa mus-19 gene is identical to the qde-3 gene, which encodes a RecQ homologue and is involved in recombination repair and postreplication repair.
    Kato A; Akamatsu Y; Sakuraba Y; Inoue H
    Curr Genet; 2004 Feb; 45(1):37-44. PubMed ID: 14595518
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel phenotype of an excision-repair mutant in Neurospora crassa: mutagen sensitivity of the mus-18 mutant is specific to UV.
    Ishii C; Nakamura K; Inoue H
    Mol Gen Genet; 1991 Aug; 228(1-2):33-9. PubMed ID: 1832207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability.
    Roush AA; Suarez M; Friedberg EC; Radman M; Siede W
    Mol Gen Genet; 1998 Apr; 257(6):686-92. PubMed ID: 9604893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae.
    Interthal H; Heyer WD
    Mol Gen Genet; 2000 Jun; 263(5):812-27. PubMed ID: 10905349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast.
    Alseth I; Eide L; Pirovano M; Rognes T; Seeberg E; Bjørås M
    Mol Cell Biol; 1999 May; 19(5):3779-87. PubMed ID: 10207101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling DNA repair in human: molecular mechanisms and consequences of repair defect.
    Tuteja N; Tuteja R
    Crit Rev Biochem Mol Biol; 2001; 36(3):261-90. PubMed ID: 11450971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of gene- and strand-specific repair in the moderately UV-sensitive Saccharomyces cerevisiae rad23 mutant.
    Verhage RA; Zeeman AM; Lombaerts M; van de Putte P; Brouwer J
    Mutat Res; 1996 Feb; 362(2):155-65. PubMed ID: 8596534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and genetic characterization of the Neurospora crassa REV1 and REV7 homologs: evidence for involvement in damage-induced mutagenesis.
    Sakai W; Wada Y; Naoi Y; Ishii C; Inoue H
    DNA Repair (Amst); 2003 Mar; 2(3):337-46. PubMed ID: 12547396
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative repair pathways for UV-induced DNA damage.
    Yasui A; McCready SJ
    Bioessays; 1998 Apr; 20(4):291-7. PubMed ID: 9619100
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ERCC4 (XPF) encodes a human nucleotide excision repair protein with eukaryotic recombination homologs.
    Brookman KW; Lamerdin JE; Thelen MP; Hwang M; Reardon JT; Sancar A; Zhou ZQ; Walter CA; Parris CN; Thompson LH
    Mol Cell Biol; 1996 Nov; 16(11):6553-62. PubMed ID: 8887684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the rate of excision of major UV photoproducts in the strands of the human HPRT gene of normal and xeroderma pigmentosum variant cells.
    Tung BS; McGregor WG; Wang YC; Maher VM; McCormick JJ
    Mutat Res; 1996 Jan; 362(1):65-74. PubMed ID: 8538650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G.
    Zelle B; Lohman PH
    Mutat Res; 1979 Sep; 62(2):363-8. PubMed ID: 503100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repair of damaged DNA by extracts from a xeroderma pigmentosum complementation group A revertant and expression of a protein absent in its parental cell line.
    Jones CJ; Cleaver JE; Wood RD
    Nucleic Acids Res; 1992 Mar; 20(5):991-5. PubMed ID: 1549511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair.
    Verhage RA; van Gool AJ; de Groot N; Hoeijmakers JH; van de Putte P; Brouwer J
    Mol Cell Biol; 1996 Feb; 16(2):496-502. PubMed ID: 8552076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repair of UV-irradiated plasmid DNA in mutants of Saccharomyces cerevisiae and Escherichia coli deficient in repair of pyrimidine dimers.
    Domiński Z; Jachymczyk WJ
    Acta Biochim Pol; 1987; 34(4):461-76. PubMed ID: 3329796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for defective repair of cyclobutane pyrimidine dimers with normal repair of other DNA photoproducts in a transcriptionally active gene transfected into Cockayne syndrome cells.
    Barrett SF; Robbins JH; Tarone RE; Kraemer KH
    Mutat Res; 1991 Nov; 255(3):281-91. PubMed ID: 1719400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.