These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 7775053)

  • 1. The role of attention in feature detection and conjunction discrimination: an electrophysiological analysis.
    Luck SJ; Hillyard SA
    Int J Neurosci; 1995; 80(1-4):281-97. PubMed ID: 7775053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective attention to the color and direction of moving stimuli: electrophysiological correlates of hierarchical feature selection.
    Anllo-Vento L; Hillyard SA
    Percept Psychophys; 1996 Feb; 58(2):191-206. PubMed ID: 8838164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature-guided attentional capture cannot be prevented by spatial filtering.
    Berggren N; Eimer M
    Biol Psychol; 2018 Apr; 134():1-8. PubMed ID: 29458180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective attention to specific features within objects: behavioral and electrophysiological evidence.
    Nobre AC; Rao A; Chelazzi L
    J Cogn Neurosci; 2006 Apr; 18(4):539-61. PubMed ID: 16768359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attention-related modulation of sensory-evoked brain activity in a visual search task.
    Luck SJ; Fan S; Hillyard SA
    J Cogn Neurosci; 1993; 5(2):188-95. PubMed ID: 23972153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological correlates of visual binding errors after bilateral parietal damage.
    Pedrazzini E; Fellrath J; Thézé R; Ptak R
    Neuroscience; 2016 Nov; 337():98-106. PubMed ID: 27646293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid top-down control over template-guided attention shifts to multiple objects.
    Grubert A; Fahrenfort J; Olivers CNL; Eimer M
    Neuroimage; 2017 Feb; 146():843-858. PubMed ID: 27554532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age, color processing and meaningfulness: an event-related potential study.
    Czigler I
    Int J Psychophysiol; 1996; 22(1-2):25-34. PubMed ID: 8799765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs.
    Wykowska A; Schubö A
    J Cogn Neurosci; 2011 Mar; 23(3):645-60. PubMed ID: 19929330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants of Global Color-Based Selection in Human Visual Cortex.
    Bartsch MV; Boehler CN; Stoppel CM; Merkel C; Heinze HJ; Schoenfeld MA; Hopf JM
    Cereb Cortex; 2015 Sep; 25(9):2828-41. PubMed ID: 24770709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain structures involved in visual search in the presence and absence of color singletons.
    Talsma D; Coe B; Munoz DP; Theeuwes J
    J Cogn Neurosci; 2010 Apr; 22(4):761-74. PubMed ID: 19309291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological revelations of trial history effects in a color oddball search task.
    Shin E; Chong SC
    Psychophysiology; 2016 Dec; 53(12):1878-1888. PubMed ID: 27699796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-down feature-based selection of matching features for audio-visual synchrony discrimination.
    Fujisaki W; Nishida S
    Neurosci Lett; 2008 Mar; 433(3):225-30. PubMed ID: 18281153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing links between visual short term memory, visual attention and cognitive control processes through practice: An electrophysiological insight.
    Fuggetta G; Duke PA
    Biol Psychol; 2017 May; 126():48-60. PubMed ID: 28396214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological correlates of feature analysis during visual search.
    Luck SJ; Hillyard SA
    Psychophysiology; 1994 May; 31(3):291-308. PubMed ID: 8008793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward-associated features capture attention in the absence of awareness: Evidence from object-substitution masking.
    Harris JA; Donohue SE; Schoenfeld MA; Hopf JM; Heinze HJ; Woldorff MG
    Neuroimage; 2016 Aug; 137():116-123. PubMed ID: 27153978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N2pc component as an indicator of attentional selectivity.
    Eimer M
    Electroencephalogr Clin Neurophysiol; 1996 Sep; 99(3):225-34. PubMed ID: 8862112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unitary focus of spatial attention during attentional capture: Evidence from event-related brain potentials.
    Grubert A; Righi LL; Eimer M
    J Vis; 2013 Jan; 13(3):9. PubMed ID: 23641076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing.
    Clark K; Appelbaum LG; van den Berg B; Mitroff SR; Woldorff MG
    J Neurosci; 2015 Apr; 35(13):5351-9. PubMed ID: 25834059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.