These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 7775098)
1. The effect of oxygen on vasoformative cell division. Evidence that 'physiological hypoxia' is the stimulus for normal retinal vasculogenesis. Chan-Ling T; Gock B; Stone J Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1201-14. PubMed ID: 7775098 [TBL] [Abstract][Full Text] [Related]
2. Supplemental oxygen therapy. Basis for noninvasive treatment of retinopathy of prematurity. Tailoi CL; Gock B; Stone J Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1215-30. PubMed ID: 7775099 [TBL] [Abstract][Full Text] [Related]
3. Glial, vascular, and neuronal cytogenesis in whole-mounted cat retina. Chan-Ling T Microsc Res Tech; 1997 Jan; 36(1):1-16. PubMed ID: 9031257 [TBL] [Abstract][Full Text] [Related]
4. Role of astrocytes in the control of developing retinal vessels. Zhang Y; Stone J Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1653-66. PubMed ID: 9286254 [TBL] [Abstract][Full Text] [Related]
5. 5' nucleotidase and adenosine during retinal vasculogenesis and oxygen-induced retinopathy. Lutty GA; Merges C; McLeod DS Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):218-29. PubMed ID: 10634624 [TBL] [Abstract][Full Text] [Related]
6. Effects of sustained hyperoxia on revascularization in experimental retinopathy of prematurity. Gu X; Samuel S; El-Shabrawey M; Caldwell RB; Bartoli M; Marcus DM; Brooks SE Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):496-502. PubMed ID: 11818396 [TBL] [Abstract][Full Text] [Related]
7. Localization of adenosine A2a receptor in retinal development and oxygen-induced retinopathy. Taomoto M; McLeod DS; Merges C; Lutty GA Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):230-43. PubMed ID: 10634625 [TBL] [Abstract][Full Text] [Related]
8. [Role of different oxygen concentration and different period of oxygen exposure in pathogenesis of retinopathy in neonatal mice]. Shi WJ; Chen C; Wang YH; Xiao HL; Zhou GM Zhonghua Er Ke Za Zhi; 2007 Jan; 45(1):14-9. PubMed ID: 17349141 [TBL] [Abstract][Full Text] [Related]
9. STUDIES ON DEVELOPING RETINAL VESSELS VIII. EFFECT OF OXYGEN ON THE RETINAL VESSELS OF THE RATLING. Ashton N; Blach R Br J Ophthalmol; 1961 May; 45(5):321-40. PubMed ID: 18170681 [No Abstract] [Full Text] [Related]
10. Localization of VEGF receptor-2 (KDR/Flk-1) and effects of blocking it in oxygen-induced retinopathy. McLeod DS; Taomoto M; Cao J; Zhu Z; Witte L; Lutty GA Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):474-82. PubMed ID: 11818393 [TBL] [Abstract][Full Text] [Related]
11. Hyperoxia causes reduced density of retinal astrocytes in the central avascular zone in the mouse model of oxygen-induced retinopathy. Bucher F; Stahl A; Agostini HT; Martin G Mol Cell Neurosci; 2013 Sep; 56():225-33. PubMed ID: 23756201 [TBL] [Abstract][Full Text] [Related]
12. Vascular changes and their mechanisms in the feline model of retinopathy of prematurity. Chan-Ling T; Tout S; Holländer H; Stone J Invest Ophthalmol Vis Sci; 1992 Jun; 33(7):2128-47. PubMed ID: 1607224 [TBL] [Abstract][Full Text] [Related]
13. Effect(s) of preterm birth on normal retinal vascular development and oxygen-induced retinopathy in the neonatal rat. Li R; Yang X; Wang Y; Chu Z; Liu T; Zhu T; Gao X; Ma Z Curr Eye Res; 2013 Dec; 38(12):1266-73. PubMed ID: 23885967 [TBL] [Abstract][Full Text] [Related]
14. Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. Zhang W; Ito Y; Berlin E; Roberts R; Berkowitz BA Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3119-23. PubMed ID: 12824260 [TBL] [Abstract][Full Text] [Related]
15. Transient exposure of rat pups to hyperoxia at normobaric and hyperbaric pressures does not cause retinopathy of prematurity. Calvert JW; Zhou C; Zhang JH Exp Neurol; 2004 Sep; 189(1):150-61. PubMed ID: 15296845 [TBL] [Abstract][Full Text] [Related]
16. Strain-dependent differences in oxygen-induced retinopathy in the inbred rat. van Wijngaarden P; Coster DJ; Brereton HM; Gibbins IL; Williams KA Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1445-52. PubMed ID: 15790914 [TBL] [Abstract][Full Text] [Related]
17. Suppression of retinal neovascularization by erythropoietin siRNA in a mouse model of proliferative retinopathy. Chen J; Connor KM; Aderman CM; Willett KL; Aspegren OP; Smith LE Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1329-35. PubMed ID: 18952918 [TBL] [Abstract][Full Text] [Related]
18. Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Stone J; Chan-Ling T; Pe'er J; Itin A; Gnessin H; Keshet E Invest Ophthalmol Vis Sci; 1996 Feb; 37(2):290-9. PubMed ID: 8603833 [TBL] [Abstract][Full Text] [Related]
19. CEACAM1 confers resistance toward oxygen-induced vessel damage in a mouse model of retinopathy of prematurity. Ludewig P; Flachsbarth K; Wegscheid C; Tiegs G; Richard G; Wagener C; Bartsch U; Horst AK Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):7950-60. PubMed ID: 25406283 [TBL] [Abstract][Full Text] [Related]
20. T2-TrpRS inhibits preretinal neovascularization and enhances physiological vascular regrowth in OIR as assessed by a new method of quantification. Banin E; Dorrell MI; Aguilar E; Ritter MR; Aderman CM; Smith AC; Friedlander J; Friedlander M Invest Ophthalmol Vis Sci; 2006 May; 47(5):2125-34. PubMed ID: 16639024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]