These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7775285)

  • 1. The effects of exposure to intense sound on the DC endocochlear potential in the chick.
    Poje CP; Sewell DA; Saunders JC
    Hear Res; 1995 Feb; 82(2):197-204. PubMed ID: 7775285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of auditory function and structure in the chick after two intense pure tone exposures.
    Adler HJ; Poje CP; Saunders JC
    Hear Res; 1993 Dec; 71(1-2):214-24. PubMed ID: 8113139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of auditory function following intense sound exposure in the neonatal chick.
    McFadden EA; Saunders JC
    Hear Res; 1989 Sep; 41(2-3):205-15. PubMed ID: 2808150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear nerve activity after intense sound exposure in neonatal chicks.
    Saunders JC; Doan DE; Poje CP; Fisher KA
    J Neurophysiol; 1996 Aug; 76(2):770-87. PubMed ID: 8871198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long term effects of intense sound on endocochlear DC potential.
    Ide M; Morimitsu T
    Auris Nasus Larynx; 1990; 17(1):1-10. PubMed ID: 2390027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss and recovery of sound-evoked otoacoustic emissions in young chicks following acoustic trauma.
    Ipakchi R; Kyin T; Saunders JC
    Audiol Neurootol; 2005; 10(4):209-19. PubMed ID: 15809500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of various noise exposures on endocochlear potentials correlated with cochlear gross responses.
    Wang J; Li Q; Dong W; Chen J
    Hear Res; 1992 Apr; 59(1):31-8. PubMed ID: 1629044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of kanamycin ototoxicity and hair cell regeneration on the DC endocochlear potential in adult chickens.
    Chen L; Trautwein PG; Miller K; Salvi RJ
    Hear Res; 1995 Sep; 89(1-2):28-34. PubMed ID: 8600130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Threshold shift, hair cell loss, and hair bundle stiffness following exposure to 120 and 125 dB pure tones in the neonatal chick.
    Adler HJ; Kenealy JF; Dedio RM; Saunders JC
    Acta Otolaryngol; 1992; 112(3):444-54. PubMed ID: 1441985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of the endocochlear potential and the K+ concentrations in the cochlear fluids after acoustic trauma.
    Melichar I; Syka J; Ulehlová L
    Hear Res; 1980 Jan; 2(1):55-63. PubMed ID: 7351391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of evoked potential amplitude in neonatal chicks exposed to intense sound.
    Pugliano FA; Pribitikin E; Adler HJ; Saunders JC
    Acta Otolaryngol; 1993 Jan; 113(1):18-25. PubMed ID: 8442417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of the basilar papilla following intense sound exposure in the chick.
    Marsh RR; Xu LR; Moy JP; Saunders JC
    Hear Res; 1990 Jul; 46(3):229-37. PubMed ID: 2394635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structural and functional aspects of hair cell regeneration in the chick as a result of exposure to intense sound.
    Saunders JC; Adler HJ; Pugliano FA
    Exp Neurol; 1992 Jan; 115(1):13-7. PubMed ID: 1728559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea.
    Hirose K; Liberman MC
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):339-52. PubMed ID: 14690052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of high-frequency sound on the guinea pig cochlea. Electrophysiological study using cochlear microphonics, action and endocochlear potential.
    Ishida A; Sugisawa T; Yamamura K
    ORL J Otorhinolaryngol Relat Spec; 1993; 55(6):332-6. PubMed ID: 8265117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endocochlear potential as an indicator of reticular lamina integrity after noise exposure in mice.
    Ohlemiller KK; Kaur T; Warchol ME; Withnell RH
    Hear Res; 2018 Apr; 361():138-151. PubMed ID: 29426600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of Caffeine and Hearing Recovery After Acoustic Overstimulation Events in a Guinea Pig Model.
    Zawawi F; Bezdjian A; Mujica-Mota M; Rappaport J; Daniel SJ
    JAMA Otolaryngol Head Neck Surg; 2016 Apr; 142(4):383-8. PubMed ID: 26940042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady state EP is not responsible for hearing loss in adult chickens following acoustic trauma.
    Trautwein PG; Chen L; Salvi RJ
    Hear Res; 1997 Aug; 110(1-2):266-70. PubMed ID: 9282909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal distribution of cochlear potentials and the K+ concentration in the endolymph after acoustic trauma.
    Syka J; Melichar I; Ulehlová L
    Hear Res; 1981 Jul; 4(3-4):287-98. PubMed ID: 7263516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.