These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7775301)

  • 1. Exercise training alters the Ca2+ and contractile responses of coronary arteries to endothelin.
    Bowles DK; Laughlin MH; Sturek M
    J Appl Physiol (1985); 1995 Mar; 78(3):1079-87. PubMed ID: 7775301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced L-type Ca2+ channel current density in coronary smooth muscle of exercise-trained pigs is compensated to limit myoplasmic free Ca2+ accumulation.
    Heaps CL; Bowles DK; Sturek M; Laughlin MH; Parker JL
    J Physiol; 2000 Nov; 528(Pt 3):435-45. PubMed ID: 11060122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced KCl-mediated contractility and Ca
    Heaps CL; Bray JF; Parker JL
    Am J Physiol Heart Circ Physiol; 2020 Oct; 319(4):H915-H926. PubMed ID: 32857599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ sensitization and PKC contribute to exercise training-enhanced contractility in porcine collateral-dependent coronary arteries.
    Robles JC; Sturek M; Parker JL; Heaps CL
    Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1201-9. PubMed ID: 21297028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of altered contractile responses to vasopressin and endothelin in canine coronary collateral arteries.
    Rapps JA; Jones AW; Sturek M; Magliola L; Parker JL
    Circulation; 1997 Jan; 95(1):231-9. PubMed ID: 8994441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered control of calcium in coronary smooth muscle cells by exercise training.
    Underwood FB; Laughlin MH; Sturek M
    Med Sci Sports Exerc; 1994 Oct; 26(10):1230-8. PubMed ID: 7799766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelin-1 and endothelin-3 regulate differently vasoconstrictor responses of smooth muscle of the porcine coronary artery.
    Ushio-Fukai M; Nishimura J; Kobayashi S; Kanaide H
    Br J Pharmacol; 1995 Jan; 114(1):171-9. PubMed ID: 7712014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered calcium sensitivity contributes to enhanced contractility of collateral-dependent coronary arteries.
    Heaps CL; Parker JL; Sturek M; Bowles DK
    J Appl Physiol (1985); 2004 Jul; 97(1):310-6. PubMed ID: 14978011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contractile function and myoplasmic free Ca2+ (Cam) in coronary and mesenteric arteries of endotoxemic guinea pigs.
    Jones JJ; Rapps JA; Sturek M; Mattox ML; Adams HR; Parker JL
    Shock; 1999 Jan; 11(1):64-71. PubMed ID: 9921719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of exercise training on vasomotor reactivity of porcine coronary arteries.
    Oltman CL; Parker JL; Adams HR; Laughlin MH
    Am J Physiol; 1992 Aug; 263(2 Pt 2):H372-82. PubMed ID: 1510134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium buffering in coronary smooth muscle after chronic occlusion and exercise training.
    Jones JJ; Dietz NJ; Heaps CL; Parker JL; Sturek M
    Cardiovasc Res; 2001 Aug; 51(2):359-67. PubMed ID: 11470476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in PKC signaling underlie enhanced myogenic tone in exercise-trained porcine coronary resistance arteries.
    Korzick DH; Laughlin MH; Bowles DK
    J Appl Physiol (1985); 2004 Apr; 96(4):1425-32. PubMed ID: 14672961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sarcoplasmic reticulum Ca(2+) uptake is impaired in coronary smooth muscle distal to coronary occlusion.
    Heaps CL; Sturek M; Price EM; Laughlin MH; Parker JL
    Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H223-31. PubMed ID: 11406489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vasoconstrictor responses of coronary resistance arteries in exercise-trained pigs.
    Laughlin MH; Muller JM
    J Appl Physiol (1985); 1998 Mar; 84(3):884-9. PubMed ID: 9480947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-dependent vasodilation of proximal coronary arteries from exercise-trained pigs.
    Oltman CL; Parker JL; Laughlin MH
    J Appl Physiol (1985); 1995 Jul; 79(1):33-40. PubMed ID: 7559239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise training attenuates coronary smooth muscle phenotypic modulation and nuclear Ca2+ signaling.
    Wamhoff BR; Bowles DK; Dietz NJ; Hu Q; Sturek M
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2397-410. PubMed ID: 12388302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different utilization of Ca2+ in the contractile action of endothelin-1 on cerebral, coronary and mesenteric arteries of the dog.
    Suzuki Y; Tanoi C; Shibuya M; Sugita K; Masuzawa-Ito K; Asano M
    Eur J Pharmacol; 1992 Sep; 219(3):401-8. PubMed ID: 1425968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelin-1 sensitivity of porcine coronary arteries is reduced by exercise training and is gender dependent.
    Jones AW; Rubin LJ; Magliola L
    J Appl Physiol (1985); 1999 Sep; 87(3):1172-7. PubMed ID: 10484592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise training restores adenosine-induced relaxation in coronary arteries distal to chronic occlusion.
    Heaps CL; Sturek M; Rapps JA; Laughlin MH; Parker JL
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1984-92. PubMed ID: 10843897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced endothelin(A) receptor-mediated calcium mobilization and contraction in organ cultured porcine coronary arteries.
    Hill BJ; Katwa LC; Wamhoff BR; Sturek M
    J Pharmacol Exp Ther; 2000 Nov; 295(2):484-91. PubMed ID: 11046079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.