These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7775317)

  • 1. K+ and Lac- distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation?
    Lindinger MI; McKelvie RS; Heigenhauser GJ
    J Appl Physiol (1985); 1995 Mar; 78(3):765-77. PubMed ID: 7775317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium and lactate uptake by noncontracting tissue during strenuous exercise.
    Schott HC; Bohart GV; Eberhart SW
    Equine Vet J Suppl; 2002 Sep; (34):532-8. PubMed ID: 12405746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium regulation during exercise and recovery.
    Lindinger MI; Sjøgaard G
    Sports Med; 1991 Jun; 11(6):382-401. PubMed ID: 1656509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium regulation during exercise and recovery in humans: implications for skeletal and cardiac muscle.
    Lindinger MI
    J Mol Cell Cardiol; 1995 Apr; 27(4):1011-22. PubMed ID: 7563098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sprint training enhances ionic regulation during intense exercise in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):687-702. PubMed ID: 9218228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nonworking muscle on blood metabolites and ions with intense intermittent exercise.
    Lindinger MI; Heigenhauser GJ; McKelvie RS; Jones NL
    Am J Physiol; 1990 Jun; 258(6 Pt 2):R1486-94. PubMed ID: 2360695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of lactate and other ions in inactive skeletal muscle: influence of hyperkalemic lactacidosis.
    Chin ER; Lindinger MI; Heigenhauser GJ
    Can J Physiol Pharmacol; 1997 Dec; 75(12):1375-86. PubMed ID: 9534949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise.
    Sostaric SM; Skinner SL; Brown MJ; Sangkabutra T; Medved I; Medley T; Selig SE; Fairweather I; Rutar D; McKenna MJ
    J Physiol; 2006 Jan; 570(Pt 1):185-205. PubMed ID: 16239279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood ion regulation during repeated maximal exercise and recovery in humans.
    Lindinger MI; Heigenhauser GJ; McKelvie RS; Jones NL
    Am J Physiol; 1992 Jan; 262(1 Pt 2):R126-36. PubMed ID: 1733331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in arterial, mixed venous and intraerythrocytic concentrations of ions in supramaximally exercising horses.
    Bayly WM; Kingston JK; Brown JA; Keegan RD; Greene SA; Sides RH
    Equine Vet J Suppl; 2006 Aug; (36):294-7. PubMed ID: 17402435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma volume and ion regulation during exercise after low- and high-carbohydrate diets.
    Lindinger MI; Spriet LL; Hultman E; Putman T; McKelvie RS; Lands LC; Jones NL; Heigenhauser GJ
    Am J Physiol; 1994 Jun; 266(6 Pt 2):R1896-906. PubMed ID: 8024045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of Na+-K+ homeostasis and excitability in contracting muscles: implications for fatigue.
    Nielsen OB; de Paoli FV
    Appl Physiol Nutr Metab; 2007 Oct; 32(5):974-84. PubMed ID: 18059624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of ion fluxes in skeletal muscle fatigue.
    Lindinger MI; Heigenhauser GJ
    Can J Physiol Pharmacol; 1991 Feb; 69(2):246-53. PubMed ID: 2054741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of potassium from muscle during moderate exercise in humans: a result of insufficient activation of the Na+-K+-pump?
    Verburg E; Hallén J; Sejersted OM; Vøllestad NK
    Acta Physiol Scand; 1999 Apr; 165(4):357-67. PubMed ID: 10350230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise.
    Juel C; Bangsbo J; Graham T; Saltin B
    Acta Physiol Scand; 1990 Oct; 140(2):147-59. PubMed ID: 2125176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of erythrocytes to the control of the electrolyte changes of exercise.
    McKelvie RS; Lindinger MI; Heigenhauser GJ; Jones NL
    Can J Physiol Pharmacol; 1991 Jul; 69(7):984-93. PubMed ID: 1954568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of alkalosis on muscle ions at rest and with intense exercise.
    Lindinger MI; Heigenhauser GJ; Spriet LL
    Can J Physiol Pharmacol; 1990 Jul; 68(7):820-9. PubMed ID: 2383797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma K+ dynamics and implications during and following intense rowing exercise.
    Atanasovska T; Petersen AC; Rouffet DM; Billaut F; Ng I; McKenna MJ
    J Appl Physiol (1985); 2014 Jul; 117(1):60-8. PubMed ID: 24812644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the exercise hyperkalemia: an alternate hypothesis.
    Wasserman K; Stringer WW; Casaburi R; Zhang YY
    J Appl Physiol (1985); 1997 Aug; 83(2):631-43. PubMed ID: 9262462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.