These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 7775444)
41. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
42. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues. Rousso I; Friedman N; Sheves M; Ottolenghi M Biochemistry; 1995 Sep; 34(37):12059-65. PubMed ID: 7547944 [TBL] [Abstract][Full Text] [Related]
43. Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. Lanyi J; Schobert B J Mol Biol; 2002 Aug; 321(4):727-37. PubMed ID: 12206786 [TBL] [Abstract][Full Text] [Related]
44. Effects of modifications of the retinal beta-ionone ring on archaebacterial sensory rhodopsin I. Yan B; Takahashi T; McCain DA; Rao VJ; Nakanishi K; Spudich JL Biophys J; 1990 Mar; 57(3):477-83. PubMed ID: 2306497 [TBL] [Abstract][Full Text] [Related]
45. Water molecules in the schiff base region of bacteriorhodopsin. Shibata M; Tanimoto T; Kandori H J Am Chem Soc; 2003 Nov; 125(44):13312-3. PubMed ID: 14582999 [TBL] [Abstract][Full Text] [Related]
46. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin. Dioumaev AK; Brown LS; Needleman R; Lanyi JK Biochemistry; 2001 Sep; 40(38):11308-17. PubMed ID: 11560478 [TBL] [Abstract][Full Text] [Related]
47. Regeneration of bacteriorhodopsin from thermally unfolded bacterio-opsin and all-trans retinal at high temperatures. Ghimire GD; Sugiyama H; Sonoyama M; Mitaku S Biosci Biotechnol Biochem; 2005 Jan; 69(1):252-4. PubMed ID: 15665500 [TBL] [Abstract][Full Text] [Related]
48. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor. Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101 [TBL] [Abstract][Full Text] [Related]
49. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue. Zadok U; Asato AE; Sheves M Biochemistry; 2005 Jun; 44(23):8479-85. PubMed ID: 15938637 [TBL] [Abstract][Full Text] [Related]
50. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin. Kim JM; Booth PJ; Allen SJ; Khorana HG J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776 [TBL] [Abstract][Full Text] [Related]
51. Intermediates in the folding of the membrane protein bacteriorhodopsin. Booth PJ; Flitsch SL; Stern LJ; Greenhalgh DA; Kim PS; Khorana HG Nat Struct Biol; 1995 Feb; 2(2):139-43. PubMed ID: 7749918 [TBL] [Abstract][Full Text] [Related]
52. Mechanism by which untwisting of retinal leads to productive bacteriorhodopsin photocycle states. Wolter T; Elstner M; Fischer S; Smith JC; Bondar AN J Phys Chem B; 2015 Feb; 119(6):2229-40. PubMed ID: 25196390 [TBL] [Abstract][Full Text] [Related]
53. Irreversible conformational change of bacterio-opsin induced by binding of retinal during its reconstitution to bacteriorhodopsin, as studied by (13)C NMR. Yamaguchi S; Tuzi S; Tanio M; Naito A; Lanyi JK; Needleman R; Saitô H J Biochem; 2000 May; 127(5):861-9. PubMed ID: 10788796 [TBL] [Abstract][Full Text] [Related]
54. The complex extracellular domain regulates the deprotonation and reprotonation of the retinal Schiff base during the bacteriorhodopsin photocycle. Brown LS; Váró G; Hatanaka M; Sasaki J; Kandori H; Maeda A; Friedman N; Sheves M; Nedleman R; Lanyi JK Biochemistry; 1995 Oct; 34(39):12903-11. PubMed ID: 7548047 [TBL] [Abstract][Full Text] [Related]
55. Heterogeneity in regeneration of bacteriorhodopsin from bacterio-opsin and all-trans retinal at high temperatures: implications for dynamic structural fluctuations. Sugiyama H; Sonoyama M; Ghimire GD; Mitaku S Biosci Biotechnol Biochem; 2006 Jun; 70(6):1350-5. PubMed ID: 16794313 [TBL] [Abstract][Full Text] [Related]
56. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Subramaniam S; Henderson R Nature; 2000 Aug; 406(6796):653-7. PubMed ID: 10949309 [TBL] [Abstract][Full Text] [Related]
57. Intermediates in the assembly of bacteriorhodopsin investigated by time-resolved absorption spectroscopy. Booth PJ; Farooq A Eur J Biochem; 1997 Jun; 246(3):674-80. PubMed ID: 9219525 [TBL] [Abstract][Full Text] [Related]
58. Chloride and proton transport in bacteriorhodopsin mutant D85T: different modes of ion translocation in a retinal protein. Tittor J; Haupts U; Haupts C; Oesterhelt D; Becker A; Bamberg E J Mol Biol; 1997 Aug; 271(3):405-16. PubMed ID: 9268668 [TBL] [Abstract][Full Text] [Related]
59. Direct observation of the coherent nuclear response after the absorption of a photon. Liebel M; Schnedermann C; Bassolino G; Taylor G; Watts A; Kukura P Phys Rev Lett; 2014 Jun; 112(23):238301. PubMed ID: 24972232 [TBL] [Abstract][Full Text] [Related]
60. Bacteriorhodopsin can function without a covalent linkage between retinal and protein. Schweiger U; Tittor J; Oesterhelt D Biochemistry; 1994 Jan; 33(2):535-41. PubMed ID: 8286383 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]