These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 7775831)
1. Effect of gamma-irradiation on the effector function of T lymphocytes in microbial control. Igietseme JU; Smith K; Simmons A; Rayford PL Int J Radiat Biol; 1995 May; 67(5):557-64. PubMed ID: 7775831 [TBL] [Abstract][Full Text] [Related]
2. The molecular mechanism of T-cell control of Chlamydia in mice: role of nitric oxide. Igietseme JU Immunology; 1996 Jan; 87(1):1-8. PubMed ID: 8666420 [TBL] [Abstract][Full Text] [Related]
3. Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Igietseme JU; Magee DM; Williams DM; Rank RG Infect Immun; 1994 Nov; 62(11):5195-7. PubMed ID: 7927806 [TBL] [Abstract][Full Text] [Related]
4. Resolution of murine chlamydial genital infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Igietseme JU; Ramsey KH; Magee DM; Williams DM; Kincy TJ; Rank RG Reg Immunol; 1993; 5(6):317-24. PubMed ID: 8068534 [TBL] [Abstract][Full Text] [Related]
6. An in vitro model for immune control of chlamydial growth in polarized epithelial cells. Igietseme JU; Wyrick PB; Goyeau D; Rank RG Infect Immun; 1994 Aug; 62(8):3528-35. PubMed ID: 8039923 [TBL] [Abstract][Full Text] [Related]
7. Different roles are played by alpha beta and gamma delta T cells in acquired immunity to Chlamydia trachomatis pulmonary infection. Yang X; Hayglass KT; Brunham RC Immunology; 1998 Aug; 94(4):469-75. PubMed ID: 9767433 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanism of T-cell control of Chlamydia in mice: role of nitric oxide in vivo. Igietseme JU Immunology; 1996 May; 88(1):1-5. PubMed ID: 8707333 [TBL] [Abstract][Full Text] [Related]
10. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. Perry LL; Su H; Feilzer K; Messer R; Hughes S; Whitmire W; Caldwell HD J Immunol; 1999 Mar; 162(6):3541-8. PubMed ID: 10092812 [TBL] [Abstract][Full Text] [Related]
11. Cellular immunity to the mouse pneumonitis agent. Williams DM; Schachter J; Coalson JJ; Grubbs B J Infect Dis; 1984 Apr; 149(4):630-9. PubMed ID: 6233380 [TBL] [Abstract][Full Text] [Related]
12. Chlamydia trachomatis pneumonia in the severe combined immunodeficiency (SCID) mouse. Magee DM; Igietseme JU; Smith JG; Bleicker CA; Grubbs BG; Schachter J; Rank RG; Williams DM Reg Immunol; 1993; 5(6):305-11. PubMed ID: 7520728 [TBL] [Abstract][Full Text] [Related]
13. Chlamydia trachomatis mouse pneumonitis lung infection in IL-18 and IL-12 knockout mice: IL-12 is dominant over IL-18 for protective immunity. Lu H; Yang X; Takeda K; Zhang D; Fan Y; Luo M; Shen C; Wang S; Akira S; Brunham RC Mol Med; 2000 Jul; 6(7):604-12. PubMed ID: 10997341 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of intracellular multiplication of human strains of Chlamydia trachomatis by nitric oxide. Igietseme JU; Uriri IM; Chow M; Abe E; Rank RG Biochem Biophys Res Commun; 1997 Mar; 232(3):595-601. PubMed ID: 9126319 [TBL] [Abstract][Full Text] [Related]
15. Gene knockout B cell-deficient mice demonstrate that B cells play an important role in the initiation of T cell responses to Chlamydia trachomatis (mouse pneumonitis) lung infection. Yang X; Brunham RC J Immunol; 1998 Aug; 161(3):1439-46. PubMed ID: 9686609 [TBL] [Abstract][Full Text] [Related]
16. Identification of Chlamydia trachomatis Antigens Recognized by T Cells From Highly Exposed Women Who Limit or Resist Genital Tract Infection. Russell AN; Zheng X; O'Connell CM; Wiesenfeld HC; Hillier SL; Taylor BD; Picard MD; Flechtner JB; Zhong W; Frazer LC; Darville T J Infect Dis; 2016 Dec; 214(12):1884-1892. PubMed ID: 27738051 [TBL] [Abstract][Full Text] [Related]