These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7775863)

  • 1. Apolipoprotein E isoforms and rare mutations: parallel reduction in binding to cells and to heparin reflects severity of associated type III hyperlipoproteinemia.
    Mann WA; Meyer N; Weber W; Meyer S; Greten H; Beisiegel U
    J Lipid Res; 1995 Mar; 36(3):517-25. PubMed ID: 7775863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable heparan sulfate proteoglycan binding of apolipoprotein E variants may modulate the expression of type III hyperlipoproteinemia.
    Ji ZS; Fazio S; Mahley RW
    J Biol Chem; 1994 May; 269(18):13421-8. PubMed ID: 8175773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apolipoprotein E2 (Arg136 --> Cys) mutation in the receptor binding domain of apoE is not associated with dominant type III hyperlipoproteinemia.
    März W; Hoffmann MM; Scharnagl H; Fisher E; Chen M; Nauck M; Feussner G; Wieland H
    J Lipid Res; 1998 Mar; 39(3):658-69. PubMed ID: 9548597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dominant expression of type III hyperlipoproteinemia. Pathophysiological insights derived from the structural and kinetic characteristics of ApoE-1 (Lys146-->Glu).
    Mann WA; Lohse P; Gregg RE; Ronan R; Hoeg JM; Zech LA; Brewer HB
    J Clin Invest; 1995 Aug; 96(2):1100-7. PubMed ID: 7635945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functional characteristics of a human apolipoprotein E variant (cysteine at residue 142) may explain its association with dominant expression of type III hyperlipoproteinemia.
    Horie Y; Fazio S; Westerlund JR; Weisgraber KH; Rall SC
    J Biol Chem; 1992 Jan; 267(3):1962-8. PubMed ID: 1730728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells.
    Ji ZS; Brecht WJ; Miranda RD; Hussain MM; Innerarity TL; Mahley RW
    J Biol Chem; 1993 May; 268(14):10160-7. PubMed ID: 7683668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diminished LDL receptor and high heparin binding of apolipoprotein E2 Sendai associated with lipoprotein glomerulopathy.
    Hoffmann MM; Scharnagl H; Panagiotou E; Banghard WT; Wieland H; März W
    J Am Soc Nephrol; 2001 Mar; 12(3):524-530. PubMed ID: 11181800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triglyceride-rich lipoproteins of subjects heterozygous for apolipoprotein E2(Lys146-->Gln) are inefficiently converted to cholesterol-rich lipoproteins.
    Mulder M; van der Boom H; de Knijff P; Braam C; van den Maagdenberg A; Leuven JA; Havekes LM
    Atherosclerosis; 1994 Aug; 108(2):183-92. PubMed ID: 7980718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipoprotein lipase- and hepatic triglyceride lipase- promoted very low density lipoprotein degradation proceeds via an apolipoprotein E-dependent mechanism.
    Medh JD; Fry GL; Bowen SL; Ruben S; Wong H; Chappell DA
    J Lipid Res; 2000 Nov; 41(11):1858-71. PubMed ID: 11060356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In the absence of endogenous mouse apolipoprotein E, apolipoprotein E*2(Arg-158 --> Cys) transgenic mice develop more severe hyperlipoproteinemia than apolipoprotein E*3-Leiden transgenic mice.
    van Vlijmen BJ; van Dijk KW; van't Hof HB; van Gorp PJ; van der Zee A; van der Boom H; Breuer ML; Hofker MH; Havekes LM
    J Biol Chem; 1996 Nov; 271(48):30595-602. PubMed ID: 8940032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apolipoprotein E2-Dunedin (228 Arg replaced by Cys): an apolipoprotein E2 variant with normal receptor-binding activity.
    Wardell MR; Rall SC; Brennan SO; Nye ER; George PM; Janus ED; Weisgraber KH
    J Lipid Res; 1990 Mar; 31(3):535-43. PubMed ID: 2341812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that cholesteryl ester and triglyceride accumulation in J774 macrophages induced by very low density lipoprotein subfractions occurs by different mechanisms.
    Evans AJ; Sawyez CG; Wolfe BM; Connelly PW; Maguire GF; Huff MW
    J Lipid Res; 1993 May; 34(5):703-17. PubMed ID: 8509711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High receptor binding affinity of lipoproteins in atypical dysbetalipoproteinemia (type III hyperlipoproteinemia).
    Chappell DA
    J Clin Invest; 1989 Dec; 84(6):1906-15. PubMed ID: 2556448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apolipoprotein E mediates binding of normal very low density lipoprotein to heparin but is not required for high affinity receptor binding.
    Fielding PE; Ishikawa Y; Fielding CJ
    J Biol Chem; 1989 Jul; 264(21):12462-6. PubMed ID: 2745454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apolipoprotein E2 (Lys146-->Gln) causes hypertriglyceridemia due to an apolipoprotein E variant-specific inhibition of lipolysis of very low density lipoproteins-triglycerides.
    de Beer F; van Dijk KW; Jong MC; van Vark LC; van der Zee A; Hofker MH; Fallaux FJ; Hoeben RC; Smelt AH; Havekes LM
    Arterioscler Thromb Vasc Biol; 2000 Jul; 20(7):1800-6. PubMed ID: 10894820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipoprotein lipase compensates for the defective function of apo E variants in vitro by interacting with proteoglycans and lipoprotein receptors.
    Mann WA; Meyer N; Berg D; Greten H; Beisiegel U
    Atherosclerosis; 1999 Jul; 145(1):61-9. PubMed ID: 10428296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of apolipoprotein E variants on lipolysis of very low density lipoproteins by heparan sulphate proteoglycan-bound lipoprotein lipase.
    de Man FH; de Beer F; van de Laarse A; Smelt AH; Leuven JA; Havekes LM
    Atherosclerosis; 1998 Feb; 136(2):255-62. PubMed ID: 9543096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein.
    Weisgraber KH; Mahley RW; Kowal RC; Herz J; Goldstein JL; Brown MS
    J Biol Chem; 1990 Dec; 265(36):22453-9. PubMed ID: 2266137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of apolipoprotein E7 (Glu(244)-->Lys, Glu(245)--->Lys), a mutant apolipoprotein E associated with hyperlipidemia and atherosclerosis.
    Yamamura T; Dong LM; Yamamoto A
    J Lipid Res; 1999 Feb; 40(2):253-9. PubMed ID: 9925654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function relationship of lipoprotein lipase-mediated enhancement of very low density lipoprotein binding and catabolism by the low density lipoprotein receptor. Functional importance of a properly folded surface loop covering the catalytic center.
    Salinelli S; Lo JY; Mims MP; Zsigmond E; Smith LC; Chan L
    J Biol Chem; 1996 Sep; 271(36):21906-13. PubMed ID: 8702993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.