These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
66 related articles for article (PubMed ID: 7775975)
1. Molecular correlates between reactive and developmental plasticity in the rat hippocampus. Khrestchatisky M; Ferhat L; Charton G; Bernard A; Pollard H; Represa A; Ben-Ari Y J Neurobiol; 1995 Mar; 26(3):426-36. PubMed ID: 7775975 [TBL] [Abstract][Full Text] [Related]
2. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Haas KZ; Sperber EF; Opanashuk LA; Stanton PK; Moshé SL Hippocampus; 2001; 11(6):615-25. PubMed ID: 11811655 [TBL] [Abstract][Full Text] [Related]
3. Cellular abnormalities and synaptic plasticity in seizure disorders of the immature nervous system. Swann JW; Hablitz JJ Ment Retard Dev Disabil Res Rev; 2000; 6(4):258-67. PubMed ID: 11107191 [TBL] [Abstract][Full Text] [Related]
4. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats. Gorter JA; Van Vliet EA; Proper EA; De Graan PN; Ghijsen WE; Lopes Da Silva FH; Aronica E J Comp Neurol; 2002 Jan; 442(4):365-77. PubMed ID: 11793340 [TBL] [Abstract][Full Text] [Related]
5. Focal inhibitory interneuron loss and principal cell hyperexcitability in the rat hippocampus after microinjection of a neurotoxic conjugate of saporin and a peptidase-resistant analog of Substance P. Martin JL; Sloviter RS J Comp Neurol; 2001 Jul; 436(2):127-52. PubMed ID: 11438920 [TBL] [Abstract][Full Text] [Related]
6. Seizures in the developing brain: cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. Holopainen IE Neurochem Int; 2008 May; 52(6):935-47. PubMed ID: 18093696 [TBL] [Abstract][Full Text] [Related]
7. Fetal hippocampal cells grafted to kainate-lesioned CA3 region of adult hippocampus suppress aberrant supragranular sprouting of host mossy fibers. Shetty AK; Turner DA Exp Neurol; 1997 Feb; 143(2):231-45. PubMed ID: 9056386 [TBL] [Abstract][Full Text] [Related]
8. Molecular and cellular cascades in seizure-induced neosynapse formation. Represa A; Ben-Ari Y Adv Neurol; 1997; 72():25-34. PubMed ID: 8993681 [TBL] [Abstract][Full Text] [Related]
9. Spatial exploration induces ARC, a plasticity-related immediate-early gene, only in calcium/calmodulin-dependent protein kinase II-positive principal excitatory and inhibitory neurons of the rat forebrain. Vazdarjanova A; Ramirez-Amaya V; Insel N; Plummer TK; Rosi S; Chowdhury S; Mikhael D; Worley PF; Guzowski JF; Barnes CA J Comp Neurol; 2006 Sep; 498(3):317-29. PubMed ID: 16871537 [TBL] [Abstract][Full Text] [Related]
10. CA3 axonal sprouting in kainate-induced chronic epilepsy. Siddiqui AH; Joseph SA Brain Res; 2005 Dec; 1066(1-2):129-46. PubMed ID: 16359649 [TBL] [Abstract][Full Text] [Related]
11. Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? Leite JP; Neder L; Arisi GM; Carlotti CG; Assirati JA; Moreira JE Epilepsia; 2005; 46 Suppl 5():134-41. PubMed ID: 15987268 [TBL] [Abstract][Full Text] [Related]
12. Synaptic plasticity of the CA3 commissural projection in epileptic rats: an in vivo electrophysiological study. Queiroz CM; Mello LE Eur J Neurosci; 2007 May; 25(10):3071-9. PubMed ID: 17561820 [TBL] [Abstract][Full Text] [Related]
13. Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Grillo CA; Piroli GG; Wood GE; Reznikov LR; McEwen BS; Reagan LP Neuroscience; 2005; 136(2):477-86. PubMed ID: 16226381 [TBL] [Abstract][Full Text] [Related]
14. Fos induction and persistence, neurodegeneration, and interneuron activation in the hippocampus of epilepsy-resistant versus epilepsy-prone rats after pilocarpine-induced seizures. Fabene PF; Andrioli A; Priel MR; Cavalheiro EA; Bentivoglio M Hippocampus; 2004; 14(7):895-907. PubMed ID: 15382258 [TBL] [Abstract][Full Text] [Related]
15. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation. Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998 [TBL] [Abstract][Full Text] [Related]
16. Fetal hippocampal CA3 cell grafts enriched with FGF-2 and BDNF exhibit robust long-term survival and integration and suppress aberrant mossy fiber sprouting in the injured middle-aged hippocampus. Rao MS; Hattiangady B; Shetty AK Neurobiol Dis; 2006 Feb; 21(2):276-90. PubMed ID: 16099669 [TBL] [Abstract][Full Text] [Related]
17. A brief period of epileptiform activity strengthens excitatory synapses in the rat hippocampus in vitro. Debanne D; Thompson SM; Gähwiler BH Epilepsia; 2006 Feb; 47(2):247-56. PubMed ID: 16499748 [TBL] [Abstract][Full Text] [Related]
18. Cocaine- and amphetamine-regulated transcript peptide (CART) is a selective marker of rat granule cells and of human mossy cells in the hippocampal dentate gyrus. Seress L; Abrahám H; Dóczi T; Lázár G; Kozicz T Neuroscience; 2004; 125(1):13-24. PubMed ID: 15051141 [TBL] [Abstract][Full Text] [Related]
19. Genetic dissection of the signals that induce synaptic reorganization. Schauwecker PE; Ramirez JJ; Steward O Exp Neurol; 2000 Jan; 161(1):139-52. PubMed ID: 10683280 [TBL] [Abstract][Full Text] [Related]
20. Temporal specific patterns of semaphorin gene expression in rat brain after kainic acid-induced status epilepticus. Barnes G; Puranam RS; Luo Y; McNamara JO Hippocampus; 2003; 13(1):1-20. PubMed ID: 12625453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]