These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 7776269)

  • 1. Acoustic response properties of single neurons in the central posterior nucleus of the thalamus of the goldfish, Carassius auratus.
    Lu Z; Fay RR
    J Comp Physiol A; 1995 Jun; 176(6):747-60. PubMed ID: 7776269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic response properties of single units in the torus semicircularis of the goldfish, Carassius auratus.
    Lu Z; Fay RR
    J Comp Physiol A; 1993 Jul; 173(1):33-48. PubMed ID: 8366473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of diencephalic neurons to sensory stimulation in the goldfish, Carassius auratus.
    Kirsch JA; Hofmann MH; Mogdans J; Bleckmann H
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):419-21. PubMed ID: 11923001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural representations of the axis of acoustic particle motion in nucleus centralis of the torus semicircularis of the goldfish, Carassius auratus.
    Ma WL; Fay RR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):301-13. PubMed ID: 12012101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic response and tuning in saccular nerve fibers of the goldfish (Carassius auratus).
    Fay RR; Ream TJ
    J Acoust Soc Am; 1986 Jun; 79(6):1883-95. PubMed ID: 3722599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli.
    Gooler DM; Feng AS
    J Neurophysiol; 1992 Jan; 67(1):1-22. PubMed ID: 1552312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase-locked response characteristics of single neurons in the frog "cochlear nucleus" to steady-state and sinusoidal-amplitude-modulated tones.
    Feng AS; Lin WY
    J Neurophysiol; 1994 Nov; 72(5):2209-21. PubMed ID: 7884454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of modulated sounds in the zebra finch auditory midbrain: responses to noise, frequency sweeps, and sinusoidal amplitude modulations.
    Woolley SM; Casseday JH
    J Neurophysiol; 2005 Aug; 94(2):1143-57. PubMed ID: 15817647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central auditory neurophysiology of a sound-producing fish: the mesencephalon of Pollimyrus isidori (Mormyridae).
    Crawford JD
    J Comp Physiol A; 1993 Mar; 172(2):139-52. PubMed ID: 8478813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformations of an auditory temporal code in the medulla of a sound-producing fish.
    Kozloski J; Crawford JD
    J Neurosci; 2000 Mar; 20(6):2400-8. PubMed ID: 10704514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processing of modulation frequency in the dorsal cochlear nucleus of the guinea pig: sinusoidal frequency-modulated tones.
    Zhao HB; Liang ZA
    Hear Res; 1996 May; 95(1-2):120-34. PubMed ID: 8793514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal encoding for auditory computation: physiology of primary afferent neurons in sound-producing fish.
    Suzuki A; Kozloski J; Crawford JD
    J Neurosci; 2002 Jul; 22(14):6290-301. PubMed ID: 12122088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds.
    Bieser A; Müller-Preuss P
    Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response dynamics of goldfish saccular fibers: effects of stimulus frequency and intensity on fibers with different tuning, sensitivity, and spontaneous activity.
    Coombs S; Fay RR
    J Acoust Soc Am; 1987 Apr; 81(4):1025-35. PubMed ID: 3571718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanosensory Lateral Line Nerve Projections to Auditory Neurons in the Dorsal Descending Octaval Nucleus in the Goldfish, Carassius auratus.
    McCormick CA; Gallagher S; Cantu-Hertzler E; Woodrick S
    Brain Behav Evol; 2016; 88(1):68-80. PubMed ID: 27532270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogeny of neural discharge patterns in the ventral cochlear nucleus of the mongolian gerbil.
    Woolf NK; Ryan AF
    Brain Res; 1985 Jan; 349(1-2):131-47. PubMed ID: 3986582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response properties of single neurons in the zebra finch auditory midbrain: response patterns, frequency coding, intensity coding, and spike latencies.
    Woolley SM; Casseday JH
    J Neurophysiol; 2004 Jan; 91(1):136-51. PubMed ID: 14523072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for parallel processing in the frog's auditory thalamus.
    Hall JC; Feng AS
    J Comp Neurol; 1987 Apr; 258(3):407-19. PubMed ID: 3495555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral contrasts underlying auditory stream segregation in goldfish (Carassius auratus).
    Fay RR
    J Assoc Res Otolaryngol; 2000 Sep; 1(2):120-8. PubMed ID: 11545140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.