These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7778974)

  • 1. Evidence of two pathways for the metabolism of phenol by Aspergillus fumigatus.
    Jones KH; Trudgill PW; Hopper DJ
    Arch Microbiol; 1995 Mar; 163(3):176-81. PubMed ID: 7778974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Ethylphenol metabolism by Aspergillus fumigatus.
    Jones KH; Trudgill PW; Hopper DJ
    Appl Environ Microbiol; 1994 Jun; 60(6):1978-83. PubMed ID: 8031091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII.
    Hinteregger C; Leitner R; Loidl M; Ferschl A; Streichsbier F
    Appl Microbiol Biotechnol; 1992 May; 37(2):252-9. PubMed ID: 1368244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2.
    Hofrichter M; Bublitz F; Fritsche W
    J Basic Microbiol; 1994; 34(3):163-72. PubMed ID: 8071803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of catechol 1,2-dioxygenases from Rhodococcus rhodnii strain 135 and Rhodococcus rhodochrous strain 89: comparison with analogous enzymes of the ordinary and modified ortho-cleavage pathways.
    Solyanikova IP; Golovlev EL; Lisnyak OV; Golovleva LA
    Biochemistry (Mosc); 1999 Jul; 64(7):824-31. PubMed ID: 10424908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phenol degradation in Pseudomonas putida.
    Janke D; Pohl R; Fritsche W
    Z Allg Mikrobiol; 1981; 21(4):295-303. PubMed ID: 7293241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferential utilization of phenol rather than glucose by Trichosporon cutaneum possessing a partially constitutive catechol 1,2-oxygenase.
    Shoda M; Udaka S
    Appl Environ Microbiol; 1980 Jun; 39(6):1129-33. PubMed ID: 7190808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions of 3-ethylcatechol and 3-(methylthio)catechol with catechol dioxygenases.
    Pascal RA; Huang DS
    Arch Biochem Biophys; 1986 Jul; 248(1):130-7. PubMed ID: 3015028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of the mixtures of 4-chlorophenol and phenol by Comamonas testosteroni CPW301.
    Bae HS; Lee JM; Kim YB; Lee ST
    Biodegradation; 1996-1997; 7(6):463-9. PubMed ID: 9188195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenol degradation by a Graphium sp. FIB4 isolated from industrial effluents.
    Santos VL; Heilbuth NM; Braga DT; Monteiro AS; Linardi VR
    J Basic Microbiol; 2003; 43(3):238-48. PubMed ID: 12761775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for isofunctional enzymes in the degradation of phenol, m- and p-toluate, and p-cresol via catechol meta-cleavage pathways in Alcaligenes eutrophus.
    Hughes EJ; Bayly RC; Skurray RA
    J Bacteriol; 1984 Apr; 158(1):79-83. PubMed ID: 6370966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of aromatic compounds by Caulobacter crescentus.
    Chatterjee DK; Bourquin AW
    J Bacteriol; 1987 May; 169(5):1993-6. PubMed ID: 3571158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that covalent binding of metabolically activated phenol to microsomal proteins is caused by oxidised products of hydroquinone and catechol.
    Wallin H; Melin P; Schelin C; Jergil B
    Chem Biol Interact; 1985 Nov; 55(3):335-46. PubMed ID: 4075440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes.
    Sawahata T; Neal RA
    Mol Pharmacol; 1983 Mar; 23(2):453-60. PubMed ID: 6835203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of p-Cresol by the Fungus Aspergillus fumigatus.
    Jones KH; Trudgill PW; Hopper DJ
    Appl Environ Microbiol; 1993 Apr; 59(4):1125-30. PubMed ID: 16348913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification, biochemical properties and substrate specificity of a catechol 1,2-dioxygenase from a phenol degrading Acinetobacter radioresistens.
    Briganti F; Pessione E; Giunta C; Scozzafava A
    FEBS Lett; 1997 Oct; 416(1):61-4. PubMed ID: 9369233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four Aromatic Intradiol Ring Cleavage Dioxygenases from Aspergillus niger.
    Semana P; Powlowski J
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catechol dioxygenases.
    Broderick JB
    Essays Biochem; 1999; 34():173-89. PubMed ID: 10730195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.
    Hopper DJ; Taylor DG
    J Bacteriol; 1975 Apr; 122(1):1-6. PubMed ID: 1123316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of diphenylether by Pseudomonas cepacia Et4: enzymatic release of phenol from 2,3-dihydroxydiphenylether.
    Pfeifer F; TrĂ¼per HG; Klein J; Schacht S
    Arch Microbiol; 1993; 159(4):323-9. PubMed ID: 7683455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.