BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7778975)

  • 1. Metabolic pathways and energetics of the acetone-oxidizing, sulfate-reducing bacterium, Desulfobacterium cetonicum.
    Janssen PH; Schink B
    Arch Microbiol; 1995 Mar; 163(3):188-94. PubMed ID: 7778975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolic and anabolic enzyme activities and energetics of acetone metabolism of the sulfate-reducing bacterium Desulfococcus biacutus.
    Janssen PH; Schnik B
    J Bacteriol; 1995 Jan; 177(2):277-82. PubMed ID: 7814315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway of butyrate catabolism by Desulfobacterium cetonicum.
    Janssen PH; Schink B
    J Bacteriol; 1995 Jul; 177(13):3870-2. PubMed ID: 7601855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in desulfobacterium cetonicum.
    Müller JA; Galushko AS; Kappler A; Schink B
    J Bacteriol; 2001 Jan; 183(2):752-7. PubMed ID: 11133971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes involved in anaerobic degradation of acetone by a denitrifying bacterium.
    Platen H; Schink B
    Biodegradation; 1990; 1(4):243-51. PubMed ID: 1368470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two enzymes of the acetone degradation pathway of Desulfococcus biacutus: coenzyme B
    Frey J; Schneider F; Huhn T; Spiteller D; Schink B; Schleheck D
    Environ Microbiol Rep; 2018 Jun; 10(3):283-292. PubMed ID: 29528562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of short-chain ketones and isopropanol in sulfate-reducing bacteria.
    Frey J; Kaßner S; Spiteller D; Mergelsberg M; Boll M; Schleheck D; Schink B
    BMC Microbiol; 2021 Feb; 21(1):50. PubMed ID: 33593288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of nitrate-dependent acetone degradation by Alicycliphilus denitrificans strain BC.
    Oosterkamp MJ; Boeren S; Atashgahi S; Plugge CM; Schaap PJ; Stams AJ
    FEMS Microbiol Lett; 2015 Jun; 362(11):. PubMed ID: 25977262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov.
    Platen H; Temmes A; Schink B
    Arch Microbiol; 1990; 154(4):355-61. PubMed ID: 2244787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate.
    Müller JA; Galushko AS; Kappler A; Schink B
    Arch Microbiol; 1999 Nov; 172(5):287-94. PubMed ID: 10550470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus.
    Gutiérrez Acosta OB; Hardt N; Schink B
    Appl Environ Microbiol; 2013 Oct; 79(20):6228-35. PubMed ID: 23913429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of an ATP-dependent carboxylase in a CO2-dependent pathway of acetone metabolism by Xanthobacter strain Py2.
    Sluis MK; Small FJ; Allen JR; Ensign SA
    J Bacteriol; 1996 Jul; 178(14):4020-6. PubMed ID: 8763926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate.
    Biegert T; Fuchs G; Heider J
    Eur J Biochem; 1996 Jun; 238(3):661-8. PubMed ID: 8706665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172.
    Boll M; Fuchs G
    Eur J Biochem; 1995 Dec; 234(3):921-33. PubMed ID: 8575453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-malyl-coenzyme A/beta-methylmalyl-coenzyme A lyase is involved in acetate assimilation of the isocitrate lyase-negative bacterium Rhodobacter capsulatus.
    Meister M; Saum S; Alber BE; Fuchs G
    J Bacteriol; 2005 Feb; 187(4):1415-25. PubMed ID: 15687206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures.
    Renilla S; Bernal V; Fuhrer T; Castaño-Cerezo S; Pastor JM; Iborra JL; Sauer U; Cánovas M
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2109-24. PubMed ID: 21881893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon isotope fractionation by sulfate-reducing bacteria using different pathways for the oxidation of acetate.
    Goevert D; Conrad R
    Environ Sci Technol; 2008 Nov; 42(21):7813-7. PubMed ID: 19031865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy Conservation Model Based on Genomic and Experimental Analyses of a Carbon Monoxide-Utilizing, Butyrate-Forming Acetogen, Eubacterium limosum KIST612.
    Jeong J; Bertsch J; Hess V; Choi S; Choi IG; Chang IS; Müller V
    Appl Environ Microbiol; 2015 Jul; 81(14):4782-90. PubMed ID: 25956767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic pathways for cytotoxic end product formation from glutamate- and aspartate-containing peptides by Porphyromonas gingivalis.
    Takahashi N; Sato T; Yamada T
    J Bacteriol; 2000 Sep; 182(17):4704-10. PubMed ID: 10940008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.