BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7779259)

  • 1. Conserved nonplanar heme distortions in cytochromes c.
    Hobbs JD; Shelnutt JA
    J Protein Chem; 1995 Jan; 14(1):19-25. PubMed ID: 7779259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-induced changes in nonplanarity of the porphyrin in nickel cytochrome c probed by resonance Raman spectroscopy.
    Ma JG; Laberge M; Song XZ; Jentzen W; Jia SL; Zhang J; Vanderkooi JM; Shelnutt JA
    Biochemistry; 1998 Apr; 37(15):5118-28. PubMed ID: 9548742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conservation of the conformation of the porphyrin macrocycle in hemoproteins.
    Jentzen W; Ma JG; Shelnutt JA
    Biophys J; 1998 Feb; 74(2 Pt 1):753-63. PubMed ID: 9533688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3.
    Ma JG; Zhang J; Franco R; Jia SL; Moura I; Moura JJ; Kroneck PM; Shelnutt JA
    Biochemistry; 1998 Sep; 37(36):12431-42. PubMed ID: 9730815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of heme c attachment on heme conformation and potential.
    Kleingardner JG; Levin BD; Zoppellaro G; Andersson KK; Elliott SJ; Bren KL
    J Biol Inorg Chem; 2018 Oct; 23(7):1073-1083. PubMed ID: 30143872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of a conserved internal water molecule and its associated hydrogen bond network in cytochrome c.
    Berghuis AM; Guillemette JG; McLendon G; Sherman F; Smith M; Brayer GD
    J Mol Biol; 1994 Feb; 236(3):786-99. PubMed ID: 8114094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of heme in structural organization of cytochrome c probed by semisynthesis.
    Kang X; Carey J
    Biochemistry; 1999 Nov; 38(48):15944-51. PubMed ID: 10625461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c.
    Louie GV; Brayer GD
    J Mol Biol; 1990 Jul; 214(2):527-55. PubMed ID: 2166169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A heme c-peptide model system for the resonance Raman study of c-type cytochromes: characterization of the solvent-dependence of peptide-histidine-heme interactions.
    Othman S; Le Lirzin A; Desbois A
    Biochemistry; 1993 Sep; 32(37):9781-91. PubMed ID: 8396971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide.
    Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR
    Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of oxidized Bacillus pasteurii cytochrome c553 at 0.97-A resolution.
    Benini S; González A; Rypniewski WR; Wilson KS; Van Beeumen JJ; Ciurli S
    Biochemistry; 2000 Oct; 39(43):13115-26. PubMed ID: 11052663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: surface-enhanced resonance Raman spectroscopy and simulation studies.
    Rivas L; Soares CM; Baptista AM; Simaan J; Di Paolo RE; Murgida DH; Hildebrandt P
    Biophys J; 2005 Jun; 88(6):4188-99. PubMed ID: 15764652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and structural basis of electron transfer in tetra- and octa-heme cytochromes.
    Czjzek M; Payan F; Haser R
    Biochimie; 1994; 76(6):546-53. PubMed ID: 7880893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological significance and applications of heme c proteins and peptides.
    Kleingardner JG; Bren KL
    Acc Chem Res; 2015 Jul; 48(7):1845-52. PubMed ID: 26083801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus.
    Nørager S; Legrand P; Pieulle L; Hatchikian C; Roth M
    J Mol Biol; 1999 Jul; 290(4):881-902. PubMed ID: 10398589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation state-dependent conformational changes in cytochrome c.
    Berghuis AM; Brayer GD
    J Mol Biol; 1992 Feb; 223(4):959-76. PubMed ID: 1311391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural similarity of cytochrome c2 from Rhodopseudomonas viridis to mitochondrial cytochromes c revealed by its crystal structure at 2.7 A resolution.
    Sogabe S; Ezoe T; Kasai N; Saeda M; Uno A; Miki M; Miki K
    FEBS Lett; 1994 May; 345(1):5-8. PubMed ID: 8194599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein influences on porphyrin structure in cytochrome c: evidence from Raman difference spectroscopy.
    Shelnutt JA; Rousseau DL; Dethmers JK; Margoliash E
    Biochemistry; 1981 Oct; 20(22):6485-97. PubMed ID: 6272840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoselective in vitro formation of c-type cytochrome variants from Hydrogenobacter thermophilus containing only a single thioether bond.
    Daltrop O; Smith KM; Ferguson SJ
    J Biol Chem; 2003 Jul; 278(27):24308-13. PubMed ID: 12707264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of mixed substituents on the macrocyclic ring distortions of free base porphyrins and their metal complexes.
    Bhyrappa P; Arunkumar C; Varghese B
    Inorg Chem; 2009 May; 48(9):3954-65. PubMed ID: 19334709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.