These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 7779299)

  • 1. Mathematical modelling of electrostatic fluctuations in subtilisin active site.
    Lopoukhov LV; Sitnitsky AE; Fedotov VD
    J Biomol Struct Dyn; 1995 Feb; 12(4):767-84. PubMed ID: 7779299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins.
    Dinakarpandian D; Shenoy BC; Hilvert D; McRee DE; McTigue M; Carey PR
    Biochemistry; 1999 May; 38(20):6659-67. PubMed ID: 10350485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo.
    McPhalen CA; James MN
    Biochemistry; 1988 Aug; 27(17):6582-98. PubMed ID: 3064813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational dynamics of protein side chains and enzyme-substrate interaction.
    Sitnitsky AE
    J Biomol Struct Dyn; 1994 Oct; 12(2):475-86. PubMed ID: 7702781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can a simple function for the dielectric response model electrostatic effects in globular proteins?
    Fersht AR; Sternberg MJ
    Protein Eng; 1989 May; 2(7):527-30. PubMed ID: 2664761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics effects on protein electrostatics.
    Wendoloski JJ; Matthew JB
    Proteins; 1989; 5(4):313-21. PubMed ID: 2552435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MD simulation of subtilisin BPN' in a crystal environment.
    Heiner AP; Berendsen HJ; van Gunsteren WF
    Proteins; 1992 Dec; 14(4):451-64. PubMed ID: 1438183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state.
    Almog O; González A; Godin N; de Leeuw M; Mekel MJ; Klein D; Braun S; Shoham G; Walter RL
    Proteins; 2009 Feb; 74(2):489-96. PubMed ID: 18655058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantiocomplementary enzymatic resolution of the chiral auxiliary: cis,cis-6-(2,2-dimethylpropanamido)spiro[4.4]nonan-1-ol and the molecular basis for the high enantioselectivity of subtilisin Carlsberg.
    Mugford PF; Lait SM; Keay BA; Kazlauskas RJ
    Chembiochem; 2004 Jul; 5(7):980-7. PubMed ID: 15239056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex of subtilisin BPN' with Streptomyces subtilisin inhibitor. Complex formation concomitant with change in reducibility of disulfide bonds in the inhibitor.
    Komiyama T; Oomori A; Fukuyo K; Kanno H; Miwa M
    Int J Pept Protein Res; 1986 Oct; 28(4):325-33. PubMed ID: 3539839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant.
    Ruan B; Hoskins J; Bryan PN
    Biochemistry; 1999 Jun; 38(26):8562-71. PubMed ID: 10387104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of electrostatic potentials in an enzyme active site.
    Gilson MK; Honig BH
    Nature; 1987 Nov 5-11; 330(6143):84-6. PubMed ID: 3313058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics of charge-charge interactions in proteins.
    Gilson MK; Honig BH
    Proteins; 1988; 3(1):32-52. PubMed ID: 3287370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase-thymidylate synthase.
    Elcock AH; Potter MJ; Matthews DA; Knighton DR; McCammon JA
    J Mol Biol; 1996 Sep; 262(3):370-4. PubMed ID: 8845002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration effects on the electrostatic potential around tuftsin.
    Valdeavella CV; Blatt HD; Yang L; Pettitt BM
    Biopolymers; 1999 Aug; 50(2):133-43. PubMed ID: 10380337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved continuum electrostatic modelling in proteins, with comparison to experiment.
    Warwicker J
    J Mol Biol; 1994 Feb; 236(3):887-903. PubMed ID: 7906738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of electrostatic effects of engineering of protein charges.
    Sternberg MJ; Hayes FR; Russell AJ; Thomas PG; Fersht AR
    Nature; 1987 Nov 5-11; 330(6143):86-8. PubMed ID: 3313059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic fields at the active site of ribulose-1,5-bisphosphate carboxylase.
    Lu GG; Lindqvist Y; Schneider G
    Proteins; 1992 Feb; 12(2):117-27. PubMed ID: 1603801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic potential maps at the quantum chemistry level of the active sites of the serine peptidases, alpha-chymotrypsin and subtilisin.
    Lamotte-Brasseur J; Dive G; Dehareng D; Ghuysen JM
    J Theor Biol; 1990 Jul; 145(2):183-98. PubMed ID: 2205758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.