BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 7779437)

  • 1. Basic fibroblast growth factor radioprotects bone marrow and not RIF1 tumor.
    Okunieff P; Abraham EH; Moini M; Snyder ML; Gloe TR; Capogrossi MC; Ding I
    Acta Oncol; 1995; 34(3):435-8. PubMed ID: 7779437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidic fibroblast growth factor (FGF1) increases survival and haematopoietic recovery in total body irradiated C3H/HeNCr mice.
    Ding I; Wu T; Matsubara H; Magae J; Shou M; Cook J; Okunieff P
    Cytokine; 1997 Jan; 9(1):59-65. PubMed ID: 9067097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravenous basic fibroblast growth factor protects the lung but not mediastinal organs against radiation-induced apoptosis in vivo.
    Fuks Z; Alfieri A; Haimovitz-Friedman A; Seddon A; Cordon-Cardo C
    Cancer J Sci Am; 1995; 1(1):62-72. PubMed ID: 9166456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice.
    Okunieff P; Mester M; Wang J; Maddox T; Gong X; Tang D; Coffee M; Ding I
    Radiat Res; 1998 Aug; 150(2):204-11. PubMed ID: 9692366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential radioprotection of three mouse strains by basic or acidic fibroblast growth factor.
    Okunieff P; Wu T; Huang K; Ding I
    Br J Cancer Suppl; 1996 Jul; 27():S105-8. PubMed ID: 8763859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of zinc compound on body weight and recovery of bone marrow in mice treated with total body irradiation.
    Huang MY; Lian SL; Wu HL; Chai CY; Chang SJ; Huang CJ; Tang JY
    Kaohsiung J Med Sci; 2007 Sep; 23(9):453-62. PubMed ID: 17766214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity, radiation sensitivity modification, and combined drug effects of ascorbic acid with misonidazole in vivo on FSaII murine fibrosarcomas.
    Okunieff P; Suit HD
    J Natl Cancer Inst; 1987 Aug; 79(2):377-81. PubMed ID: 3474467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumors arising in SCID mice share enhanced radiation sensitivity of SCID normal tissues.
    Budach W; Hartford A; Gioioso D; Freeman J; Taghian A; Suit HD
    Cancer Res; 1992 Nov; 52(22):6292-6. PubMed ID: 1423275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo.
    Fuks Z; Persaud RS; Alfieri A; McLoughlin M; Ehleiter D; Schwartz JL; Seddon AP; Cordon-Cardo C; Haimovitz-Friedman A
    Cancer Res; 1994 May; 54(10):2582-90. PubMed ID: 8168084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential radioprotection of tissues in C3H/J mice by a combination of 5-hydroxy L-tryptophan with 2-aminoethylisothiuronium bromide hydrobromide.
    Basu SK; Chuttani K; Srinivasan MN; Singh S; George S
    Indian J Exp Biol; 1992 Jun; 30(6):478-81. PubMed ID: 1506027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor growth and tumor radiosensitivity in mice given myeloprotective doses of fibroblast growth factors.
    Ding I; Huang K; Snyder ML; Cook J; Zhang L; Wersto N; Okunieff P
    J Natl Cancer Inst; 1996 Oct; 88(19):1399-404. PubMed ID: 8827018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-12 facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation.
    Chen T; Burke KA; Zhan Y; Wang X; Shibata D; Zhao Y
    Exp Hematol; 2007 Feb; 35(2):203-13. PubMed ID: 17258069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histamine protects bone marrow against cellular damage induced by ionising radiation.
    Medina VA; Croci M; Carabajal E; Bergoc RM; Rivera ES
    Int J Radiat Biol; 2010 Apr; 86(4):283-90. PubMed ID: 20353338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IL-12 protects bone marrow from and sensitizes intestinal tract to ionizing radiation.
    Neta R; Stiefel SM; Finkelman F; Herrmann S; Ali N
    J Immunol; 1994 Nov; 153(9):4230-7. PubMed ID: 7930625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of short-term splitting of gamma-ray doses on changes in haemopoietic stem cell number in bone marrow and on mortality of whole-body irradiated mice.
    Vávrová J; Petýrek P
    Folia Biol (Praha); 1988; 34(6):399-408. PubMed ID: 3073968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency.
    Peña LA; Fuks Z; Kolesnick RN
    Cancer Res; 2000 Jan; 60(2):321-7. PubMed ID: 10667583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radioprotection of bone marrow stem cell subsets by interleukin-1 and kit-ligand: implications for CFU-S as the responsible target cell population.
    van Os R; Lamont C; Witsell A; Mauch PM
    Exp Hematol; 1997 Mar; 25(3):205-10. PubMed ID: 9091295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo radioprotection by 5-aminosalicylic acid.
    Mantena SK; Unnikrishnan MK; Joshi R; Radha V; Devi PU; Mukherjee T
    Mutat Res; 2008 Jan; 650(1):63-79. PubMed ID: 18155638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex vivo culture rescues hematopoietic stem cells with long-term repopulating capacity following harvest from lethally irradiated mice.
    Chute JP; Fung J; Muramoto G; Erwin R
    Exp Hematol; 2004 Mar; 32(3):308-17. PubMed ID: 15003317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukin 1 beta initially sensitizes and subsequently protects murine intestinal stem cells exposed to photon radiation.
    Hancock SL; Chung RT; Cox RS; Kallman RF
    Cancer Res; 1991 May; 51(9):2280-5. PubMed ID: 2015592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.