These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7779798)

  • 1. Determination of subunit dissociation constants in native and inactivated CTP synthetase by sedimentation equilibrium.
    Robertson JG
    Biochemistry; 1995 Jun; 34(22):7533-41. PubMed ID: 7779798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation and covalent modification of CTP synthetase by thiourea dioxide.
    Robertson JG; Sparvero LJ; Villafranca JJ
    Protein Sci; 1992 Oct; 1(10):1298-307. PubMed ID: 1303749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of cytidine-triphosphate synthetase from rat liver, and demonstration of monomer, dimer and tetramer.
    Thomas PE; Lamb BJ; Chu EH
    Biochim Biophys Acta; 1988 Apr; 953(3):334-44. PubMed ID: 3355843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTP synthetase from Escherichia coli: an improved purification procedure and characterization of hysteretic and enzyme concentration effects on kinetic properties.
    Anderson PM
    Biochemistry; 1983 Jun; 22(13):3285-92. PubMed ID: 6349684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytically active monomer and dimer forms of rat liver carbamoyl-phosphate synthetase.
    Lusty CJ
    Biochemistry; 1981 Jun; 20(13):3665-74. PubMed ID: 7272272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the glutamine site of Escherichia coli guanosine 5'-monophosphate synthetase.
    Zalkin H; Truitt CD
    J Biol Chem; 1977 Aug; 252(15):5431-6. PubMed ID: 18463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ordered disruption of subunit interfaces during the stepwise reversible dissociation of Escherichia coli phosphofructokinase with KSCN.
    Deville-Bonne D; Le Bras G; Teschner W; Garel JR
    Biochemistry; 1989 Feb; 28(4):1917-22. PubMed ID: 2524212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical cross-linking stabilizes the enzymic activity and quaternary structure of formyltetrahydrofolate synthetase.
    de Renobales M; Welch W
    J Biol Chem; 1980 Nov; 255(21):10460-3. PubMed ID: 7430130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast and novel assay of CTP synthetase. Evidence for hysteretic properties of the mammalian enzyme.
    Van Kuilenburg AB; Elzinga L; Van den Berg AA; Slingerland RJ; Van Gennip AH
    Anticancer Res; 1994; 14(2A):411-5. PubMed ID: 7912492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the reactive sulfhydryl groups of S-adenosylmethionine synthetase.
    Markham GD; Satishchandran C
    J Biol Chem; 1988 Jun; 263(18):8666-70. PubMed ID: 3288619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human platelet factor 4 subunit association/dissociation thermodynamics and kinetics.
    Chen MJ; Mayo KH
    Biochemistry; 1991 Jul; 30(26):6402-11. PubMed ID: 2054346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic analysis of the dissociation of the aldolase tetramer substituted at one or both of the subunit interfaces.
    Tolan DR; Schuler B; Beernink PT; Jaenicke R
    Biol Chem; 2003; 384(10-11):1463-71. PubMed ID: 14669989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential biochemical regulation of the URA7- and URA8-encoded CTP synthetases from Saccharomyces cerevisiae.
    Nadkarni AK; McDonough VM; Yang WL; Stukey JE; Ozier-Kalogeropoulos O; Carman GM
    J Biol Chem; 1995 Oct; 270(42):24982-8. PubMed ID: 7559626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the mechanism of CTP synthetase using rapid quench and isotope partitioning methods.
    Lewis DA; Villafranca JJ
    Biochemistry; 1989 Oct; 28(21):8454-9. PubMed ID: 2532543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on inactivation of lipoprotein lipase: role of the dimer to monomer dissociation.
    Osborne JC; Bengtsson-Olivecrona G; Lee NS; Olivecrona T
    Biochemistry; 1985 Sep; 24(20):5606-11. PubMed ID: 4074716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly(142) is critical for tetramerization of CTP synthase from Escherichia coli.
    Lunn FA; Macleod TJ; Bearne SL
    Biochem J; 2008 May; 412(1):113-21. PubMed ID: 18260824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bovine pancreatic asparagine synthetase explored with substrate analogs and specific monoclonal antibodies.
    Mehlhaff PM; Schuster SM
    Arch Biochem Biophys; 1991 Jan; 284(1):143-50. PubMed ID: 1703400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active enzyme sedimentation, sedimentation velocity, and sedimentation equilibrium studies of succinyl-CoA synthetases of porcine heart and Escherichia coli.
    Wolodko WT; Kay CM; Bridger WA
    Biochemistry; 1986 Sep; 25(19):5420-5. PubMed ID: 3535876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-level production from a baculovirus expression system and biochemical characterization of human GMP synthetase.
    Lou L; Nakamura J; Tsing S; Nguyen B; Chow J; Straub K; Chan H; Barnett J
    Protein Expr Purif; 1995 Aug; 6(4):487-95. PubMed ID: 8527935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urea-induced inactivation, dissociation, and unfolding of the allosteric phosphofructokinase from Escherichia coli.
    Bras GL; Teschner W; Deville-Bonne D; Garel JR
    Biochemistry; 1989 Aug; 28(17):6836-41. PubMed ID: 2531001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.