BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 7779985)

  • 1. [Participation of SH-groups in regulating oxidative phosphorylation by malate and palmitate-uncoupled respiration in liver mitochondria].
    Samartsev VN; Zeldi IP
    Biokhimiia; 1995 Apr; 60(4):635-43. PubMed ID: 7779985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of p-chloromercuribenzoate on regulation of oxidative phosphorylation by ADP and ATP and stimulation of liver mitochondrial respiration by palmitate].
    Samartsev VN; Zeldi IP; Smirnov AV
    Biokhimiia; 1995 Oct; 60(10):1706-10. PubMed ID: 8555366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of ATP on the malate regulation of oxidative phosphorylation in brain mitochondria].
    Samartsev VN
    Ukr Biokhim Zh (1978); 1990; 62(2):104-6. PubMed ID: 2368180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-chain fatty acids act as protonophoric uncouplers of oxidative phosphorylation in rat liver mitochondria.
    Schönfeld P; Schild L; Kunz W
    Biochim Biophys Acta; 1989 Dec; 977(3):266-72. PubMed ID: 2556180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1975 Mar; 376(3):387-97. PubMed ID: 164904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of octanoate on the rate of oxidative phosphorylation and the associated extramitochondrial ATP/ADP ratios studied with isolated rat liver mitochondria oxidizing pyruvate.
    Schönfeld P; Petzold D; Kunz W
    Biomed Biochim Acta; 1984; 43(10):1055-65. PubMed ID: 6525184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of methyl methacrylate on mitochondrial function and structure.
    Bereznowski Z
    Int J Biochem; 1994 Sep; 26(9):1119-27. PubMed ID: 7988736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxyatractylate-sensitive uncoupling in liver mitochondria from ground squirrels during hibernation and arousal.
    Brustovetsky NN; Amerkanov ZG; Yegorova ME; Mokhova EN; Skulachev VP
    FEBS Lett; 1990 Oct; 272(1-2):190-2. PubMed ID: 2226831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Participation of the ADP/ATP-antiporter in the uncoupling action of fatty acids in liver mitochondria].
    Bodrova ME; Markova OV; Mokhova EN; Samartsev VN
    Biokhimiia; 1995 Aug; 60(8):1349-57. PubMed ID: 7578587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucagon stimulation of mitochondrial respiration.
    Yamazaki RK
    J Biol Chem; 1975 Oct; 250(19):7924-30. PubMed ID: 240844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Hepatocyte mitochondrion respiratory chain in rats with experimental toxic hepatitis].
    Shiriaeva AP; Baĭdiuk EV; Arkad'eva AV; Okovityĭ SV; Morozov VI; Sakuta GA
    Tsitologiia; 2007; 49(2):125-32. PubMed ID: 17432597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effect of Mg2+ on the protonophoric activity of palmitic acid.
    Shinohara Y; Unami A; Teshima M; Nishida H; van Dam K; Terada H
    Biochim Biophys Acta; 1995 Mar; 1228(2-3):229-234. PubMed ID: 7893729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Uncoupling of oxidative phosphorylation by fatty acids and detergents suppressed by ATP/ADP antiporter inhibitors].
    Brustovetskiĭ NN; Dedukhova VN; Egorova MV; Mokhova EN; Skulachev VP
    Biokhimiia; 1991 Jun; 56(6):1042-8. PubMed ID: 1932337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of adenosine triphosphate on the tricarboxylate transporting system of rat liver mitochondria.
    Robinson BH; Cheema-Dhadli S; Halperin ML
    J Biol Chem; 1975 May; 250(10):3639-43. PubMed ID: 1126931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THE EFFECT OF ATRACTYLATE AND OLIGOMYCIN ON THE BEHAVIOUR OF MITOCHONDRIA TOWARDS ADENINE NUCLEOTIDES.
    CHAPPELL JB; CROFTS AR
    Biochem J; 1965 Jun; 95(3):707-16. PubMed ID: 14342506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The decrease of mitochondrial substrate uptake caused by trialkyltin and trialkyl-lead compounds in chloride media and its relevance to inhibition of oxidative phosphorylation.
    Skilleter DN
    Biochem J; 1975 Feb; 146(2):465-71. PubMed ID: 808219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-[(1 and 2)-phenyl-2-hydroxyethyl]cysteine-induced alterations in renal mitochondrial function in male Fischer-344 rats.
    Chakrabarti SK; Denniel C; Malick MA; Bai C
    Toxicol Appl Pharmacol; 1998 Jul; 151(1):123-34. PubMed ID: 9705895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetoacetate and malate effects on succinate and energy production by O2-deprived liver mitochondria supplied with 2-oxoglutarate.
    Guidoux R
    Arch Biochem Biophys; 1991 Jun; 287(2):397-402. PubMed ID: 1898011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting the translocation of oxaloacetate and L-malate into rat liver mitochondria.
    Haslam JM; Griffiths DE
    Biochem J; 1968 Oct; 109(5):921-8. PubMed ID: 4235143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.