These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 7780308)
21. Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (Stellaria media L.) seeds. Slavokhotova AA; Odintsova TI; Rogozhin EA; Musolyamov AK; Andreev YA; Grishin EV; Egorov TA Biochimie; 2011 Mar; 93(3):450-6. PubMed ID: 21056078 [TBL] [Abstract][Full Text] [Related]
22. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. Yevtushenko DP; Romero R; Forward BS; Hancock RE; Kay WW; Misra S J Exp Bot; 2005 Jun; 56(416):1685-95. PubMed ID: 15863447 [TBL] [Abstract][Full Text] [Related]
23. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Liu Y; Luo J; Xu C; Ren F; Peng C; Wu G; Zhao J Plant Physiol; 2000 Apr; 122(4):1015-24. PubMed ID: 10759497 [TBL] [Abstract][Full Text] [Related]
24. Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. De Samblanx GW; Goderis IJ; Thevissen K; Raemaekers R; Fant F; Borremans F; Acland DP; Osborn RW; Patel S; Broekaert WF J Biol Chem; 1997 Jan; 272(2):1171-9. PubMed ID: 8995418 [TBL] [Abstract][Full Text] [Related]
25. Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. François IE; De Bolle MF; Dwyer G; Goderis IJ; Woutors PF; Verhaert PD; Proost P; Schaaper WM; Cammue BP; Broekaert WF Plant Physiol; 2002 Apr; 128(4):1346-58. PubMed ID: 11950983 [TBL] [Abstract][Full Text] [Related]
26. Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Swathi Anuradha T; Divya K; Jami SK; Kirti PB Plant Cell Rep; 2008 Nov; 27(11):1777-86. PubMed ID: 18758784 [TBL] [Abstract][Full Text] [Related]
27. A metal-dependent DNA-binding protein interacts with a constitutive element of a light-responsive promoter. Lam E; Kano-Murakami Y; Gilmartin P; Niner B; Chua NH Plant Cell; 1990 Sep; 2(9):857-66. PubMed ID: 2152132 [TBL] [Abstract][Full Text] [Related]
28. A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. Terras FR; Torrekens S; Van Leuven F; Osborn RW; Vanderleyden J; Cammue BP; Broekaert WF FEBS Lett; 1993 Feb; 316(3):233-40. PubMed ID: 8422949 [TBL] [Abstract][Full Text] [Related]
29. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. Osborn RW; De Samblanx GW; Thevissen K; Goderis I; Torrekens S; Van Leuven F; Attenborough S; Rees SB; Broekaert WF FEBS Lett; 1995 Jul; 368(2):257-62. PubMed ID: 7628617 [TBL] [Abstract][Full Text] [Related]
30. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Berrocal-Lobo M; Segura A; Moreno M; López G; García-Olmedo F; Molina A Plant Physiol; 2002 Mar; 128(3):951-61. PubMed ID: 11891250 [TBL] [Abstract][Full Text] [Related]
32. NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Portieles R; Ayra C; Gonzalez E; Gallo A; Rodriguez R; Chacón O; López Y; Rodriguez M; Castillo J; Pujol M; Enriquez G; Borroto C; Trujillo L; Thomma BP; Borrás-Hidalgo O Plant Biotechnol J; 2010 Aug; 8(6):678-90. PubMed ID: 20626828 [TBL] [Abstract][Full Text] [Related]
33. Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Games PD; Dos Santos IS; Mello EO; Diz MS; Carvalho AO; de Souza-Filho GA; Da Cunha M; Vasconcelos IM; Ferreira Bdos S; Gomes VM Peptides; 2008 Dec; 29(12):2090-100. PubMed ID: 18786582 [TBL] [Abstract][Full Text] [Related]
34. Increased resistance to late leaf spot disease in transgenic peanut using a combination of PR genes. Vasavirama K; Kirti PB Funct Integr Genomics; 2012 Nov; 12(4):625-34. PubMed ID: 23053199 [TBL] [Abstract][Full Text] [Related]
35. Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Koo JC; Lee SY; Chun HJ; Cheong YH; Choi JS; Kawabata S; Miyagi M; Tsunasawa S; Ha KS; Bae DW; Han CD; Lee BL; Cho MJ Biochim Biophys Acta; 1998 Jan; 1382(1):80-90. PubMed ID: 9507071 [TBL] [Abstract][Full Text] [Related]
36. Purification and characterization of a CkTLP protein from Cynanchum komarovii seeds that confers antifungal activity. Wang Q; Li F; Zhang X; Zhang Y; Hou Y; Zhang S; Wu Z PLoS One; 2011 Feb; 6(2):e16930. PubMed ID: 21364945 [TBL] [Abstract][Full Text] [Related]
37. Psc-AFP from Psoralea corylifolia L. overexpressed in Pichia pastoris increases antimicrobial activity and enhances disease resistance of transgenic tobacco. Luo XM; Xie CJ; Wang D; Wei YM; Cai J; Cheng SS; Yang X-; Sui A- Appl Microbiol Biotechnol; 2017 Feb; 101(3):1073-1084. PubMed ID: 27587300 [TBL] [Abstract][Full Text] [Related]
38. Temporal generation of multiple antifungal proteins in primed seeds. Wang X; Thoma RS; Carroll JA; Duffin KL Biochem Biophys Res Commun; 2002 Mar; 292(1):236-42. PubMed ID: 11890698 [TBL] [Abstract][Full Text] [Related]
39. Four plant defensins from an indigenous South African Brassicaceae species display divergent activities against two test pathogens despite high sequence similarity in the encoding genes. de Beer A; Vivier MA BMC Res Notes; 2011 Oct; 4():459. PubMed ID: 22032337 [TBL] [Abstract][Full Text] [Related]