These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Cammue BP; Thevissen K; Hendriks M; Eggermont K; Goderis IJ; Proost P; Van Damme J; Osborn RW; Guerbette F; Kader JC Plant Physiol; 1995 Oct; 109(2):445-55. PubMed ID: 7480341 [TBL] [Abstract][Full Text] [Related]
44. ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana. Epple P; Apel K; Bohlmann H FEBS Lett; 1997 Jan; 400(2):168-72. PubMed ID: 9001391 [TBL] [Abstract][Full Text] [Related]
45. Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Yang X; Xiao Y; Wang X; Pei Y Appl Environ Microbiol; 2007 Feb; 73(3):939-46. PubMed ID: 17158620 [TBL] [Abstract][Full Text] [Related]
46. Defensins--components of the innate immune system in plants. Lay FT; Anderson MA Curr Protein Pept Sci; 2005 Feb; 6(1):85-101. PubMed ID: 15638771 [TBL] [Abstract][Full Text] [Related]
47. Characterization and expression of an nsLTPs-like antimicrobial protein gene from motherwort (Leonurus japonicus). Yang X; Wang X; Li X; Zhang B; Xiao Y; Li D; Xie C; Pei Y Plant Cell Rep; 2008 Apr; 27(4):759-66. PubMed ID: 18228022 [TBL] [Abstract][Full Text] [Related]
48. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Keller H; Pamboukdjian N; Ponchet M; Poupet A; Delon R; Verrier JL; Roby D; Ricci P Plant Cell; 1999 Feb; 11(2):223-35. PubMed ID: 9927640 [TBL] [Abstract][Full Text] [Related]
49. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Linthorst HJ; Meuwissen RL; Kauffmann S; Bol JF Plant Cell; 1989 Mar; 1(3):285-91. PubMed ID: 2535503 [TBL] [Abstract][Full Text] [Related]
50. The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. Lay FT; Schirra HJ; Scanlon MJ; Anderson MA; Craik DJ J Mol Biol; 2003 Jan; 325(1):175-88. PubMed ID: 12473460 [TBL] [Abstract][Full Text] [Related]
51. Organ-specific and auxin-inducible expression of two tobacco par A-related genes in transgenic plants. Niwa Y; Muranaka T; Baba A; Machida Y DNA Res; 1994; 1(5):213-21. PubMed ID: 7584043 [TBL] [Abstract][Full Text] [Related]
52. New antifungal proteins from sugar beet (Beta vulgaris L.) showing homology to non-specific lipid transfer proteins. Nielsen KK; Nielsen JE; Madrid SM; Mikkelsen JD Plant Mol Biol; 1996 Jun; 31(3):539-52. PubMed ID: 8790287 [TBL] [Abstract][Full Text] [Related]
53. Ectopic expression of a tobacco homeobox gene, NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Tamaoki M; Kusaba S; Kano-Murakami Y; Matsuoka M Plant Cell Physiol; 1997 Aug; 38(8):917-27. PubMed ID: 9327591 [TBL] [Abstract][Full Text] [Related]
54. Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression. Cao Y; Yang Y; Zhang H; Li D; Zheng Z; Song F Physiol Plant; 2008 Nov; 134(3):440-52. PubMed ID: 18573188 [TBL] [Abstract][Full Text] [Related]
55. A novel hairpin-like antimicrobial peptide from barnyard grass (Echinochloa crusgalli L.) seeds: Structure-functional and molecular-genetics characterization. Ryazantsev DY; Rogozhin EA; Dimitrieva TV; Drobyazina PE; Khadeeva NV; Egorov TA; Grishin EV; Zavriev SK Biochimie; 2014 Apr; 99():63-70. PubMed ID: 24275143 [TBL] [Abstract][Full Text] [Related]
56. Tandem combination of Trigonella foenum-graecum defensin (Tfgd2) and Raphanus sativus antifungal protein (RsAFP2) generates a more potent antifungal protein. Karri V; Bharadwaja KP Funct Integr Genomics; 2013 Nov; 13(4):435-43. PubMed ID: 24022215 [TBL] [Abstract][Full Text] [Related]
57. A radish seed antifungal peptide with a high amyloid fibril-forming propensity. Garvey M; Meehan S; Gras SL; Schirra HJ; Craik DJ; Van der Weerden NL; Anderson MA; Gerrard JA; Carver JA Biochim Biophys Acta; 2013 Aug; 1834(8):1615-23. PubMed ID: 23665069 [TBL] [Abstract][Full Text] [Related]
58. A biotechnological approach to improving the nutritive value of alfalfa. Tabe LM; Wardley-Richardson T; Ceriotti A; Aryan A; McNabb W; Moore A; Higgins TJ J Anim Sci; 1995 Sep; 73(9):2752-9. PubMed ID: 8582868 [TBL] [Abstract][Full Text] [Related]