These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7780627)

  • 1. The vulnerable window for unidirectional block in cardiac tissue: characterization and dependence on membrane excitability and intercellular coupling.
    Shaw RM; Rudy Y
    J Cardiovasc Electrophysiol; 1995 Feb; 6(2):115-31. PubMed ID: 7780627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac excitation: an interactive process of ion channels and gap junctions.
    Rudy Y; Shaw RM
    Adv Exp Med Biol; 1997; 430():269-79. PubMed ID: 9330736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Na(+) channel and cell coupling abnormalities on vulnerability to reentry: a simulation study.
    Qu Z; Karagueuzian HS; Garfinkel A; Weiss JN
    Am J Physiol Heart Circ Physiol; 2004 Apr; 286(4):H1310-21. PubMed ID: 14630634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unidirectional block and reentry of cardiac excitation: a model study.
    Quan W; Rudy Y
    Circ Res; 1990 Feb; 66(2):367-82. PubMed ID: 2297808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling.
    Shaw RM; Rudy Y
    Circ Res; 1997 Nov; 81(5):727-41. PubMed ID: 9351447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action potential propagation in inhomogeneous cardiac tissue: safety factor considerations and ionic mechanism.
    Wang Y; Rudy Y
    Am J Physiol Heart Circ Physiol; 2000 Apr; 278(4):H1019-29. PubMed ID: 10749693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed afterdepolarizations generate both triggers and a vulnerable substrate promoting reentry in cardiac tissue.
    Liu MB; de Lange E; Garfinkel A; Weiss JN; Qu Z
    Heart Rhythm; 2015 Oct; 12(10):2115-24. PubMed ID: 26072025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unidirectional block in a computer model of partially coupled segments of cardiac Purkinje tissue.
    Cabo C; Barr RC
    Ann Biomed Eng; 1993; 21(6):633-44. PubMed ID: 8116915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vulnerable window for conduction block in a one-dimensional cable of cardiac cells, 2: multiple extrasystoles.
    Qu Z; Garfinkel A; Weiss JN
    Biophys J; 2006 Aug; 91(3):805-15. PubMed ID: 16679366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Block of impulse propagation at an abrupt tissue expansion: evaluation of the critical strand diameter in 2- and 3-dimensional computer models.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 Sep; 30(3):449-59. PubMed ID: 7585837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of gap junctions in the propagation of the cardiac action potential.
    Rohr S
    Cardiovasc Res; 2004 May; 62(2):309-22. PubMed ID: 15094351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling.
    Rohr S; Kucera JP; Fast VG; Kléber AG
    Science; 1997 Feb; 275(5301):841-4. PubMed ID: 9012353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effects of hypokalemia on the Na+ channel in cardiac tissue--a computer simulation study].
    Ma L; Yang L; Jin Y; Chen X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Feb; 26(1):1-5. PubMed ID: 19334542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Physiology and pathophysiology of cardiac impulse conduction].
    Kléber AG; Fast VG; Kucera J; Rohr S
    Z Kardiol; 1996; 85 Suppl 6():25-33. PubMed ID: 9064973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 50% reduction of excitability but not of intercellular coupling affects conduction velocity restitution and activation delay in the mouse heart.
    Stein M; van Veen TA; Hauer RN; de Bakker JM; van Rijen HV
    PLoS One; 2011; 6(6):e20310. PubMed ID: 21673812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proarrhythmic response to sodium channel blockade. Theoretical model and numerical experiments.
    Starmer CF; Lastra AA; Nesterenko VV; Grant AO
    Circulation; 1991 Sep; 84(3):1364-77. PubMed ID: 1653123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ionic mechanisms of conduction in cardiac tissue.
    Rudy Y
    J Electrocardiol; 2001; 34 Suppl():65-8. PubMed ID: 11781938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vulnerability in an excitable medium: analytical and numerical studies of initiating unidirectional propagation.
    Starmer CF; Biktashev VN; Romashko DN; Stepanov MR; Makarova ON; Krinsky VI
    Biophys J; 1993 Nov; 65(5):1775-87. PubMed ID: 8298011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micropatterns of propagation.
    Lee PJ; Pogwizd SM
    Adv Cardiol; 2006; 42():86-106. PubMed ID: 16646586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of cardiac conduction in a cell-based computational model.
    Jæger KH; Edwards AG; McCulloch A; Tveito A
    PLoS Comput Biol; 2019 May; 15(5):e1007042. PubMed ID: 31150383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.