These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 7781066)

  • 1. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP.
    Mayford M; Wang J; Kandel ER; O'Dell TJ
    Cell; 1995 Jun; 81(6):891-904. PubMed ID: 7781066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairment of spatial but not contextual memory in CaMKII mutant mice with a selective loss of hippocampal LTP in the range of the theta frequency.
    Bach ME; Hawkins RD; Osman M; Kandel ER; Mayford M
    Cell; 1995 Jun; 81(6):905-15. PubMed ID: 7781067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of calcium-calmodulin kinase II in three forms of synaptic plasticity.
    Stevens CF; Tonegawa S; Wang Y
    Curr Biol; 1994 Aug; 4(8):687-93. PubMed ID: 7953554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CA1 long-term potentiation is diminished but present in hippocampal slices from alpha-CaMKII mutant mice.
    Hinds HL; Tonegawa S; Malinow R
    Learn Mem; 1998; 5(4-5):344-54. PubMed ID: 10454359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice.
    Goh JJ; Manahan-Vaughan D
    Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus.
    Rotenberg A; Mayford M; Hawkins RD; Kandel ER; Muller RU
    Cell; 1996 Dec; 87(7):1351-61. PubMed ID: 8980240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity.
    Lee HK; Barbarosie M; Kameyama K; Bear MF; Huganir RL
    Nature; 2000 Jun; 405(6789):955-9. PubMed ID: 10879537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal synaptic metaplasticity requires inhibitory autophosphorylation of Ca2+/calmodulin-dependent kinase II.
    Zhang L; Kirschstein T; Sommersberg B; Merkens M; Manahan-Vaughan D; Elgersma Y; Beck H
    J Neurosci; 2005 Aug; 25(33):7697-707. PubMed ID: 16107656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice.
    Nguyen PV; Duffy SN; Young JZ
    J Neurophysiol; 2000 Nov; 84(5):2484-93. PubMed ID: 11067991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ
    J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct synaptic loci of Ca2+/calmodulin-dependent protein kinase II necessary for long-term potentiation and depression.
    Stanton PK; Gage AT
    J Neurophysiol; 1996 Sep; 76(3):2097-101. PubMed ID: 8890320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium threshold shift enables frequency-independent control of plasticity by an instructive signal.
    Piochon C; Titley HK; Simmons DH; Grasselli G; Elgersma Y; Hansel C
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13221-13226. PubMed ID: 27799554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic calmodulin-dependent protein kinase II activation: dose-dependent effects on synaptic plasticity, learning, and memory.
    Bejar R; Yasuda R; Krugers H; Hood K; Mayford M
    J Neurosci; 2002 Jul; 22(13):5719-26. PubMed ID: 12097524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene.
    Alarcon JM; Hodgman R; Theis M; Huang YS; Kandel ER; Richter JD
    Learn Mem; 2004; 11(3):318-27. PubMed ID: 15169862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LTD, LTP, and the sliding threshold for long-term synaptic plasticity.
    Stanton PK
    Hippocampus; 1996; 6(1):35-42. PubMed ID: 8878740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific.
    Goodell DJ; Zaegel V; Coultrap SJ; Hell JW; Bayer KU
    Cell Rep; 2017 Jun; 19(11):2231-2243. PubMed ID: 28614711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of prior prolonged low frequency stimulation on the further synaptic plasticity at hippocampal CA1 synapses.
    Liang PI; Yang HW; Lin YW; Yen CD; Min MY
    Chin J Physiol; 2002 Jun; 45(2):63-7. PubMed ID: 12817719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction mechanisms and modulation of bidirectional burst stimulation-induced synaptic plasticity in the hippocampus.
    Clark K; Normann C
    Eur J Neurosci; 2008 Jul; 28(2):279-87. PubMed ID: 18702699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alpha-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity.
    Chapman PF; Frenguelli BG; Smith A; Chen CM; Silva AJ
    Neuron; 1995 Mar; 14(3):591-7. PubMed ID: 7695905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A form of long-lasting, learning-related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing.
    Huang YY; Pittenger C; Kandel ER
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):859-64. PubMed ID: 14711997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.