These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 7781608)

  • 1. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32.
    Tomoyasu T; Gamer J; Bukau B; Kanemori M; Mori H; Rutman AJ; Oppenheim AB; Yura T; Yamanaka K; Niki H
    EMBO J; 1995 Jun; 14(11):2551-60. PubMed ID: 7781608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease.
    Bruckner RC; Gunyuzlu PL; Stein RL
    Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli.
    Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB
    J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine.
    Blaszczak A; Georgopoulos C; Liberek K
    Mol Microbiol; 1999 Jan; 31(1):157-66. PubMed ID: 9987118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C terminus of sigma(32) is not essential for degradation by FtsH.
    Tomoyasu T; Arsène F; Ogura T; Bukau B
    J Bacteriol; 2001 Oct; 183(20):5911-7. PubMed ID: 11566990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease.
    Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F
    Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation.
    Kanemori M; Yanagi H; Yura T
    J Biol Chem; 1999 Jul; 274(31):22002-7. PubMed ID: 10419524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32.
    Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B
    J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB.
    Herman C; Thévenet D; D'Ari R; Bouloc P
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3516-20. PubMed ID: 7724592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not sufficient for degradation by the FtsH protease.
    Obrist M; Milek S; Klauck E; Hengge R; Narberhaus F
    Microbiology (Reading); 2007 Aug; 153(Pt 8):2560-2571. PubMed ID: 17660420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH.
    Herman C; Prakash S; Lu CZ; Matouschek A; Gross CA
    Mol Cell; 2003 Mar; 11(3):659-69. PubMed ID: 12667449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo.
    Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T
    Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of AAA family FtsH protease of Mycobacterium tuberculosis.
    Srinivasan R; Anilkumar G; Rajeswari H; Ajitkumar P
    FEMS Microbiol Lett; 2006 Jun; 259(1):97-105. PubMed ID: 16684108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli.
    Kanemori M; Nishihara K; Yanagi H; Yura T
    J Bacteriol; 1997 Dec; 179(23):7219-25. PubMed ID: 9393683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease.
    Obrist M; Langklotz S; Milek S; Führer F; Narberhaus F
    FEMS Microbiol Lett; 2009 Jan; 290(2):199-208. PubMed ID: 19025566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli.
    Akiyama Y; Yoshihisa T; Ito K
    J Biol Chem; 1995 Oct; 270(40):23485-90. PubMed ID: 7559511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus.
    Fischer B; Rummel G; Aldridge P; Jenal U
    Mol Microbiol; 2002 Apr; 44(2):461-78. PubMed ID: 11972783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB).
    Akiyama Y; Ito K
    EMBO J; 2000 Aug; 19(15):3888-95. PubMed ID: 10921871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic organization and in vivo characterization of proteolytic activity of FtsH of Mycobacterium smegmatis SN2.
    Anilkumar G; Srinivasan R; Ajitkumar P
    Microbiology (Reading); 2004 Aug; 150(Pt 8):2629-2639. PubMed ID: 15289559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc-metalloprotease FtsH in vitro.
    Srinivasan R; Rajeswari H; Ajitkumar P
    Microbiol Res; 2008; 163(1):21-30. PubMed ID: 16638632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.