These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 7781643)

  • 41. Xanthine oxidase activates pro-matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells through non-free radical mechanisms.
    Liu W; Rosenberg GA; Shi H; Furuichi T; Timmins GS; Cunningham LA; Liu KJ
    Arch Biochem Biophys; 2004 Jun; 426(1):11-7. PubMed ID: 15130778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Xanthine oxidase reaction with nitric oxide and peroxynitrite.
    Houston M; Chumley P; Radi R; Rubbo H; Freeman BA
    Arch Biochem Biophys; 1998 Jul; 355(1):1-8. PubMed ID: 9647660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxygen radicals stimulate gallbladder glycoprotein secretion.
    LaMont JT
    Symp Soc Exp Biol; 1989; 43():273-8. PubMed ID: 2561890
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxygen radicals: effects on intestinal vascular permeability.
    Parks DA; Shah AK; Granger DN
    Am J Physiol; 1984 Aug; 247(2 Pt 1):G167-70. PubMed ID: 6087676
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactive oxygen metabolites inhibit spontaneous lymphatic contractions.
    Zawieja DC; Greiner ST; Davis KL; Hinds WM; Granger HJ
    Am J Physiol; 1991 Jun; 260(6 Pt 2):H1935-43. PubMed ID: 2058726
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Injury to rat hearts produced by an exogenous free radical generating system. Study into the role of arachidonic acid and eicosanoids.
    Basu DK; Karmazyn M
    J Pharmacol Exp Ther; 1987 Aug; 242(2):673-85. PubMed ID: 3112369
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A modified technique for the measurement of sulfhydryl groups oxidized by reactive oxygen intermediates.
    Suzuki Y; Lyall V; Biber TU; Ford GD
    Free Radic Biol Med; 1990; 9(6):479-84. PubMed ID: 2079228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of xanthine oxidase and neutrophils in ischemia-reperfusion injury in rabbit lung.
    Adkins WK; Taylor AE
    J Appl Physiol (1985); 1990 Dec; 69(6):2012-8. PubMed ID: 2076995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of nitric oxide synthase by a superoxide generating system.
    Rengasamy A; Johns RA
    J Pharmacol Exp Ther; 1993 Dec; 267(3):1024-7. PubMed ID: 7505325
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of allopurinol on oxygen-induced seizures in mice.
    Hoppe SA; Terrell DJ; Gottlieb SF
    Aviat Space Environ Med; 1984 Oct; 55(10):927-30. PubMed ID: 6093764
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synergic effects of NO and oxygen free radicals in the injury of ischemia-reperfused myocardium--ESR studies on NO free radicals generated from ischemia-reperfused myocardium.
    Zhao B; Shen J; Hu J; Wan Q; Xin W
    Sci China C Life Sci; 1996 Oct; 39(5):491-500. PubMed ID: 9772352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of pulmonary vasoconstriction induced by chemotactic peptide FMLP in isolated rabbit lungs.
    Tanaka H; Bradley JD; Baudendistel LJ; Dahms TE
    J Appl Physiol (1985); 1992 Apr; 72(4):1549-56. PubMed ID: 1592749
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of intracellular xanthine oxidase by endothelial-derived nitric oxide.
    Cote CG; Yu FS; Zulueta JJ; Vosatka RJ; Hassoun PM
    Am J Physiol; 1996 Nov; 271(5 Pt 1):L869-74. PubMed ID: 8944732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The pharmacokinetics of injectable allopurinol in newborns with the hypoplastic left heart syndrome.
    McGaurn SP; Davis LE; Krawczeniuk MM; Murphy JD; Jacobs ML; Norwood WI; Clancy RR
    Pediatrics; 1994 Dec; 94(6 Pt 1):820-3. PubMed ID: 7970996
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Superoxide radical-mediated endothelial injury and vasoconstriction of rat thoracic aortic rings.
    Lawson DL; Mehta JL; Nichols WW; Mehta P; Donnelly WH
    J Lab Clin Med; 1990 May; 115(5):541-8. PubMed ID: 2160508
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Xanthine oxidase: its role in the no-reflow phenomenon.
    Punch J; Rees R; Cashmer B; Wilkins E; Smith DJ; Till GO
    Surgery; 1992 Feb; 111(2):169-76. PubMed ID: 1736387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Free radicals and posthypoxic cellular damage. Importance of the hypoxanthine-xanthine oxidase system].
    Saugstad OD
    Tidsskr Nor Laegeforen; 1986 Aug; 106(22):1697-99, 1673. PubMed ID: 3775702
    [No Abstract]   [Full Text] [Related]  

  • 58. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Liver transplantation in pigs: NO, oxygen free radicals, pulmonary hemodynamics.
    Kostopanagiotou G; Tierris J; Arkadopoulos N; Theodoraki K; Deliconstantinos G; Matsota P; Smyrniotis V; Pandazi A
    J Surg Res; 2008 Oct; 149(2):231-5. PubMed ID: 18262549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vitro differential metabolism of merbarone by xanthine oxidase and microsomal flavoenzymes. The role of reactive oxygen species.
    Muindi JF; Stevens YW; Warrell RP; Young CW
    Drug Metab Dispos; 1993; 21(3):410-4. PubMed ID: 8100495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.