These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 7781912)

  • 1. The in vivo rate of glucose-6-phosphate dehydrogenase activity in sea urchin eggs determined with a photolabile caged substrate.
    Swezey RR; Epel D
    Dev Biol; 1995 Jun; 169(2):733-44. PubMed ID: 7781912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of caged substrates to assess the activity of 6-phosphogluconate dehydrogenase in living sea urchin eggs.
    Swezey RR; Epel D
    Exp Cell Res; 1992 Aug; 201(2):366-72. PubMed ID: 1639134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caged substrates for measuring enzymatic activity in vivo: photoactivated caged glucose 6-phosphate.
    Swezey RR; Epel D
    Methods Enzymol; 1998; 291():278-88. PubMed ID: 9661155
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanisms of G6PD isozyme pattern changes at fertilization.
    Barber ML; Kolan DM; Yabuta C; Nielsen B
    J Exp Zool; 1982 Feb; 219(3):369-76. PubMed ID: 7061979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel quantitative histochemical assay to measure endogenous substrate concentrations in tissue sections. Fundamental aspects.
    Koopdonk-Kool JM; Van Noorden CJ
    Acta Histochem; 1995 Oct; 97(4):409-19. PubMed ID: 8607291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements.
    Swezey RR; Epel D
    J Cell Biol; 1986 Oct; 103(4):1509-15. PubMed ID: 3771646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity.
    Alm H; Torner H; Löhrke B; Viergutz T; Ghoneim IM; Kanitz W
    Theriogenology; 2005 May; 63(8):2194-205. PubMed ID: 15826683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative changes in F-actin during the first cell cycle: evidence for two distinct pools of F-actin in the sea urchin egg.
    Heil-Chapdelaine RA; Otto JJ
    Cell Motil Cytoskeleton; 1996; 34(1):26-35. PubMed ID: 8860229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-6-phosphate dehydrogenase regulation during hypometabolism.
    Ramnanan CJ; Storey KB
    Biochem Biophys Res Commun; 2006 Jan; 339(1):7-16. PubMed ID: 16256936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of divalent cations in activation of the sea urchin egg. I. Effect of fertilization on divalent cation content.
    Azarnia R; Chambers EL
    J Exp Zool; 1976 Oct; 198(1):65-77. PubMed ID: 978163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-mediated inactivation of the MAP kinase pathway in sea urchin eggs at fertilization.
    Kumano M; Carroll DJ; Denu JM; Foltz KR
    Dev Biol; 2001 Aug; 236(1):244-57. PubMed ID: 11456458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caffeine-induced calcium release in sea urchin eggs and the effect of continuous versus pulsed application on the mitotic apparatus.
    Harris PJ
    Dev Biol; 1994 Feb; 161(2):370-8. PubMed ID: 8313989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The calcium transient in sea urchin eggs during fertilization requires the production of inositol 1,4,5-trisphosphate.
    Lee SJ; Shen SS
    Dev Biol; 1998 Jan; 193(2):195-208. PubMed ID: 9473324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine triphosphate levels in steelhead (Oncorhynchus mykiss) eggs: an examination of turnover, localization and role.
    Wendling NC; Bencic DC; Nagler JJ; Cloud JG; Ingermann RL
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Apr; 137(4):739-48. PubMed ID: 15123182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural changes of the endoplasmic reticulum of sea urchin eggs during fertilization.
    Jaffe LA; Terasaki M
    Dev Biol; 1993 Apr; 156(2):566-73. PubMed ID: 8462752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ovostatin, an endogenous trypsin inhibitor of sea urchin eggs: purification and characterization of ovostatin from eggs of the sea urchin, Strongylocentrotus intermedius.
    Yamada Y; Aketa K
    Gamete Res; 1988 Mar; 19(3):265-75. PubMed ID: 3058564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox changes during fertilization and maturation of marine invertebrate eggs.
    Schomer B; Epel D
    Dev Biol; 1998 Nov; 203(1):1-11. PubMed ID: 9806768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diamide-induced alterations of intracellular thiol status and the regulation of glucose metabolism in the developing rat conceptus in vitro.
    Hiranruengchok R; Harris C
    Teratology; 1995 Oct; 52(4):205-14. PubMed ID: 8838290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the tricarboxylic acid cycle in sea urchin eggs and embryos.
    Mita M; Yasumasu I
    J Exp Zool; 1983 Oct; 228(1):71-7. PubMed ID: 6663254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. After fertilization of sea urchin eggs, eIF4G is post-translationally modified and associated with the cap-binding protein eIF4E.
    Oulhen N; Salaün P; Cosson B; Cormier P; Morales J
    J Cell Sci; 2007 Feb; 120(Pt 3):425-34. PubMed ID: 17213333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.