These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7781928)

  • 21. Electron microscope analyses of the bio-silica basal spicule from the Monorhaphis chuni sponge.
    Werner P; Blumtritt H; Zlotnikov I; Graff A; Dauphin Y; Fratzl P
    J Struct Biol; 2015 Aug; 191(2):165-74. PubMed ID: 26094876
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complex morphologies of biogenic crystals emerge from anisotropic growth of symmetry-related facets.
    Avrahami EM; Houben L; Aram L; Gal A
    Science; 2022 Apr; 376(6590):312-316. PubMed ID: 35420932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule.
    Politi Y; Metzler RA; Abrecht M; Gilbert B; Wilt FH; Sagi I; Addadi L; Weiner S; Gilbert PU
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17362-6. PubMed ID: 18987314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biologically controlled mineralization in the hypercalcified sponge Petrobiona massiliana (Calcarea, Calcaronea).
    Gilis M; Baronnet A; Dubois P; Legras L; Grauby O; Willenz P
    J Struct Biol; 2012 Jun; 178(3):279-89. PubMed ID: 22507830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-induced, previously unidentified twin form of calcite.
    Pokroy B; Kapon M; Marin F; Adir N; Zolotoyabko E
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7337-41. PubMed ID: 17460048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining.
    Annenkov VV; Danilovtseva EN
    J Struct Biol; 2016 Apr; 194(1):29-37. PubMed ID: 26821342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anisotropic lattice distortions in biogenic calcite induced by intra-crystalline organic molecules.
    Pokroy B; Fitch AN; Marin F; Kapon M; Adir N; Zolotoyabko E
    J Struct Biol; 2006 Jul; 155(1):96-103. PubMed ID: 16682231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The terminology of sponge spicules.
    Łukowiak M; Van Soest R; Klautau M; Pérez T; Pisera A; Tabachnick K
    J Morphol; 2022 Dec; 283(12):1517-1545. PubMed ID: 36208470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling calcium carbonate biomineralisation processes.
    Mukkamala SB; Anson CE; Powell AK
    J Inorg Biochem; 2006 May; 100(5-6):1128-38. PubMed ID: 16650477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of calcite crystal morphology by intracrystalline acidic proteins and glycoproteins.
    Albeck S; Addadi I; Weiner S
    Connect Tissue Res; 1996; 35(1-4):365-70. PubMed ID: 9084676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transformation of amorphous calcium carbonate to rod-like single crystal calcite via "copying" collagen template.
    Xue Z; Hu B; Dai S; Du Z
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():506-11. PubMed ID: 26117783
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesostructure from hydration gradients in demosponge biosilica.
    Neilson JR; George NC; Murr MM; Seshadri R; Morse DE
    Chemistry; 2014 Apr; 20(17):4956-65. PubMed ID: 24633700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization.
    Neira-Carrillo A; Acevedo DF; Miras MC; Barbero CA; Gebauer D; Cölfen H; Arias JL
    Langmuir; 2008 Nov; 24(21):12496-507. PubMed ID: 18839967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intra-epithelial spicules in a homosclerophorid sponge.
    Maldonado M; Riesgo A
    Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomineralization in living hypercalcified demosponges: toward a shared mechanism?
    Gilis M; Grauby O; Willenz P; Dubois P; Heresanu V; Baronnet A
    J Struct Biol; 2013 Sep; 183(3):441-454. PubMed ID: 23748183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calcite Nanotuned Chitinous Skeletons of Giant
    Kertmen A; Petrenko I; Schimpf C; Rafaja D; Petrova O; Sivkov V; Nekipelov S; Fursov A; Stelling AL; Heimler K; Rogoll A; Vogt C; Ehrlich H
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of crystal size and lattice formation by starmaker in otolith biomineralization.
    Söllner C; Burghammer M; Busch-Nentwich E; Berger J; Schwarz H; Riekel C; Nicolson T
    Science; 2003 Oct; 302(5643):282-6. PubMed ID: 14551434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallographic structure of the foliated calcite of bivalves.
    Checa AG; Esteban-Delgado FJ; Rodríguez-Navarro AB
    J Struct Biol; 2007 Feb; 157(2):393-402. PubMed ID: 17097305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation.
    Choi CS; Kim YW
    Biomaterials; 2000 Feb; 21(3):213-22. PubMed ID: 10646937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acidic peptides acting as growth modifiers of calcite crystals.
    Volkmer D; Fricke M; Huber T; Sewald N
    Chem Commun (Camb); 2004 Aug; (16):1872-3. PubMed ID: 15306926
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.