These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 7781980)
1. Plasmid and chromosomal DNA recovery by electroextraction of cyanobacteria. Moser D; Zarka D; Hedman C; Kallas T FEMS Microbiol Lett; 1995 May; 128(3):307-13. PubMed ID: 7781980 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a restriction barrier and electrotransformation of the cyanobacterium Nostoc PCC 7121. Moser DP; Zarka D; Kallas T Arch Microbiol; 1993; 160(3):229-37. PubMed ID: 8215799 [TBL] [Abstract][Full Text] [Related]
3. Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942. Geerts D; Bovy A; de Vrieze G; Borrias M; Weisbeek P Microbiology (Reading); 1995 Apr; 141 ( Pt 4)():831-41. PubMed ID: 7773387 [TBL] [Abstract][Full Text] [Related]
4. Genetic tagging, cloning, and DNA sequence of the Synechococcus sp. strain PCC 7942 gene (gnd) encoding 6-phosphogluconate dehydrogenase. Broedel SE; Wolf RE J Bacteriol; 1990 Jul; 172(7):4023-31. PubMed ID: 2113917 [TBL] [Abstract][Full Text] [Related]
5. Characterization of an insertion sequence (IS891) of novel structure from the cyanobacterium Anabaena sp. strain M-131. Bancroft I; Wolk CP J Bacteriol; 1989 Nov; 171(11):5949-54. PubMed ID: 2553665 [TBL] [Abstract][Full Text] [Related]
6. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Wolk CP; Vonshak A; Kehoe P; Elhai J Proc Natl Acad Sci U S A; 1984 Mar; 81(5):1561-5. PubMed ID: 6324204 [TBL] [Abstract][Full Text] [Related]
7. Efficient gene transfer in Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies conjugation and chromosomal recombination. Tsinoremas NF; Kutach AK; Strayer CA; Golden SS J Bacteriol; 1994 Nov; 176(21):6764-8. PubMed ID: 7961432 [TBL] [Abstract][Full Text] [Related]
8. Characterization of cryptic plasmids from marine cyanobacteria and construction of a hybrid plasmid potentially capable of transformation of marine cyanobacterium, Synechococcus sp., and its transformation. Matsunaga T; Takeyama H; Nakamura N Appl Biochem Biotechnol; 1990; 24-25():151-60. PubMed ID: 2112896 [TBL] [Abstract][Full Text] [Related]
9. Identification, characterization and sequence analysis of the gene encoding phosphoenolpyruvate carboxylase in Anabaena sp. PCC 7120. Luinenburg I; Coleman JR J Gen Microbiol; 1992 Apr; 138(4):685-91. PubMed ID: 1588304 [TBL] [Abstract][Full Text] [Related]
10. Sequence of a 2.6-kb cryptic plasmid from a marine cyanobacterium Synechococcus sp. Kawaguchi R; Nagaoka T; Burgess JG; Takeyama H; Matsunaga T Plasmid; 1994 Nov; 32(3):245-53. PubMed ID: 7899510 [TBL] [Abstract][Full Text] [Related]
11. Molecular differentiation of the heterocystous cyanobacteria, Nostoc and Anabaena, based on complete NifD sequences. Henson BJ; Watson LE; Barnum SR Curr Microbiol; 2002 Sep; 45(3):161-4. PubMed ID: 12177735 [TBL] [Abstract][Full Text] [Related]
12. [Construction of T7 RNA polymerase gene expression system in Anabaena sp. PCC 7120 for the expression of hG-CSF]. Xie X; Tian Y; Tian J; Ning W; Wang C Sheng Wu Gong Cheng Xue Bao; 2020 Nov; 36(11):2467-2477. PubMed ID: 33244941 [TBL] [Abstract][Full Text] [Related]
13. Identification of the region of cyanobacterial plasmid pDU1 necessary for replication in Anabaena sp. strain M-131. Schmetterer G; Wolk CP Gene; 1988; 62(1):101-9. PubMed ID: 3131190 [TBL] [Abstract][Full Text] [Related]
14. Electroporation of Haemophilus influenzae is effective for transformation of plasmid but not chromosomal DNA. Mitchell MA; Skowronek K; Kauc L; Goodgal SH Nucleic Acids Res; 1991 Jul; 19(13):3625-8. PubMed ID: 1852608 [TBL] [Abstract][Full Text] [Related]
15. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli. Makino T; Harada H; Ikenaga H; Matsuda S; Takaichi S; Shindo K; Sandmann G; Ogata T; Misawa N Plant Cell Physiol; 2008 Dec; 49(12):1867-78. PubMed ID: 18987067 [TBL] [Abstract][Full Text] [Related]
16. Comparison of alkaline lysis with electroextraction and optimization of electric pulses to extract plasmid DNA from Escherichia coli. Haberl S; Jarc M; Strancar A; Peterka M; Hodžić D; Miklavčič D J Membr Biol; 2013 Nov; 246(11):861-7. PubMed ID: 23831957 [TBL] [Abstract][Full Text] [Related]
17. Direct transfer of plasmid DNA between Streptomyces spp. and E. coli by electroduction. Vujaklija D; Davies J J Antibiot (Tokyo); 1995 Jul; 48(7):635-7. PubMed ID: 7649861 [TBL] [Abstract][Full Text] [Related]
18. Instantaneous gene transfer from donor to recipient microorganisms via electroporation. Kilbane JJ; Bielaga BA Biotechniques; 1991 Mar; 10(3):354-65. PubMed ID: 1905939 [TBL] [Abstract][Full Text] [Related]
19. Transformation of the cyanobacterium Anacystis nidulans 6301 with the Escherichia coli plasmid pBR322. Daniell H; Sarojini G; McFadden BA Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2546-50. PubMed ID: 3085098 [TBL] [Abstract][Full Text] [Related]
20. The importance of homologous recombination in the generation of large deletions in hybrid plasmids in Amycolatopsis mediterranei. Tuteja D; Dua M; Khanna R; Dhingra N; Khanna M; Kaur H; Saxena DM; Lal R Plasmid; 2000 Jan; 43(1):1-11. PubMed ID: 10610815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]