These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 7781992)

  • 41. Cellulolytic bacteria in the large intestine of mammals.
    Froidurot A; Julliand V
    Gut Microbes; 2022; 14(1):2031694. PubMed ID: 35184689
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characteristic dysbiosis of gut microbiota of Chinese patients with diarrhea-predominant irritable bowel syndrome by an insight into the pan-microbiome.
    Wang Z; Xu CM; Liu YX; Wang XQ; Zhang L; Li M; Zhu SW; Xie ZJ; Wang PH; Duan LP; Zhu HQ
    Chin Med J (Engl); 2019 Apr; 132(8):889-904. PubMed ID: 30958430
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved taxonomic assignment of rumen bacterial 16S rRNA sequences using a revised SILVA taxonomic framework.
    Henderson G; Yilmaz P; Kumar S; Forster RJ; Kelly WJ; Leahy SC; Guan LL; Janssen PH
    PeerJ; 2019; 7():e6496. PubMed ID: 30863673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulatory Properties of the ADP-Glucose Pyrophosphorylase from the Clostridial Firmicutes Member Ruminococcus albus.
    Cereijo AE; Asencion Diez MD; Ballicora MA; Iglesias AA
    J Bacteriol; 2018 Sep; 200(17):. PubMed ID: 29941423
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Ruminococci: key symbionts of the gut ecosystem.
    La Reau AJ; Suen G
    J Microbiol; 2018 Mar; 56(3):199-208. PubMed ID: 29492877
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sequence-based analysis of the genus
    La Reau AJ; Meier-Kolthoff JP; Suen G
    Microb Genom; 2016 Dec; 2(12):e000099. PubMed ID: 28348838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides.
    Devendran S; Abdel-Hamid AM; Evans AF; Iakiviak M; Kwon IH; Mackie RI; Cann I
    Sci Rep; 2016 Oct; 6():35342. PubMed ID: 27748409
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial organization of intestinal microbiota in the mouse ascending colon.
    Nava GM; Friedrichsen HJ; Stappenbeck TS
    ISME J; 2011 Apr; 5(4):627-38. PubMed ID: 20981114
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture.
    Devillard E; Goodheart DB; Karnati SK; Bayer EA; Lamed R; Miron J; Nelson KE; Morrison M
    J Bacteriol; 2004 Jan; 186(1):136-45. PubMed ID: 14679233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular biological detection and characterization of Clostridium populations in municipal landfill sites.
    Van Dyke MI; McCarthy AJ
    Appl Environ Microbiol; 2002 Apr; 68(4):2049-53. PubMed ID: 11916731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens.
    Ding SY; Rincon MT; Lamed R; Martin JC; McCrae SI; Aurilia V; Shoham Y; Bayer EA; Flint HJ
    J Bacteriol; 2001 Mar; 183(6):1945-53. PubMed ID: 11222592
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gram-positive anaerobic cocci.
    Murdoch DA
    Clin Microbiol Rev; 1998 Jan; 11(1):81-120. PubMed ID: 9457430
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides.
    Kamlage B; Gruhl B; Blaut M
    Appl Environ Microbiol; 1997 May; 63(5):1732-8. PubMed ID: 9143110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phylogenetic analysis of Ruminococcus flavefaciens, the type species of the genus Ruminococcus, does not support the reclassification of Streptococcus hansenii and Peptostreptococcus productus as ruminococci.
    Willems A; Collins MD
    Int J Syst Bacteriol; 1995 Jul; 45(3):572-5. PubMed ID: 8590686
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PCR detection of Ruminococcus spp. in human and animal faecal samples.
    Wang RF; Cao WW; Cerniglia CE
    Mol Cell Probes; 1997 Aug; 11(4):259-65. PubMed ID: 9281411
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Usefulness of the MicroSeq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures.
    Lau SK; Ng KH; Woo PC; Yip KT; Fung AM; Woo GK; Chan KM; Que TL; Yuen KY
    J Clin Pathol; 2006 Feb; 59(2):219-22. PubMed ID: 16443743
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phylogenetic analysis by 16S ribosomal DNA sequence comparison reveals two unrelated groups of species within the genus Ruminococcus.
    Rainey FA; Janssen PH
    FEMS Microbiol Lett; 1995 Jun; 129(1):69-73. PubMed ID: 7781992
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reclassification of Clostridium coccoides, Ruminococcus hansenii, Ruminococcus hydrogenotrophicus, Ruminococcus luti, Ruminococcus productus and Ruminococcus schinkii as Blautia coccoides gen. nov., comb. nov., Blautia hansenii comb. nov., Blautia hydrogenotrophica comb. nov., Blautia luti comb. nov., Blautia producta comb. nov., Blautia schinkii comb. nov. and description of Blautia wexlerae sp. nov., isolated from human faeces.
    Liu C; Finegold SM; Song Y; Lawson PA
    Int J Syst Evol Microbiol; 2008 Aug; 58(Pt 8):1896-902. PubMed ID: 18676476
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.