These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7782279)

  • 1. Rhodopsin phosphorylation and dephosphorylation in vivo.
    Ohguro H; Van Hooser JP; Milam AH; Palczewski K
    J Biol Chem; 1995 Jun; 270(24):14259-62. PubMed ID: 7782279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and enzymatic aspects of rhodopsin phosphorylation.
    Ohguro H; Rudnicka-Nawrot M; Buczyłko J; Zhao X; Taylor JA; Walsh KA; Palczewski K
    J Biol Chem; 1996 Mar; 271(9):5215-24. PubMed ID: 8617805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of protein kinase C phosphorylation sites on bovine rhodopsin.
    Greene NM; Williams DS; Newton AC
    J Biol Chem; 1997 Apr; 272(16):10341-4. PubMed ID: 9099669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships among visual cycle retinoids, rhodopsin phosphorylation, and phototransduction in mouse eyes during light and dark adaptation.
    Lee KA; Nawrot M; Garwin GG; Saari JC; Hurley JB
    Biochemistry; 2010 Mar; 49(11):2454-63. PubMed ID: 20155952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors.
    Kolesnikov AV; Chrispell JD; Osawa S; Kefalov VJ; Weiss ER
    FASEB J; 2020 Feb; 34(2):2677-2690. PubMed ID: 31908030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation.
    Kennedy MJ; Lee KA; Niemi GA; Craven KB; Garwin GG; Saari JC; Hurley JB
    Neuron; 2001 Jul; 31(1):87-101. PubMed ID: 11498053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodopsin is the major in situ substrate of protein kinase C in rod outer segments of photoreceptors.
    Newton AC; Williams DS
    J Biol Chem; 1993 Aug; 268(24):18181-6. PubMed ID: 8349693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light activation of one rhodopsin molecule causes the phosphorylation of hundreds of others. A reaction observed in electropermeabilized frog rod outer segments exposed to dim illumination.
    Binder BM; Biernbaum MS; Bownds MD
    J Biol Chem; 1990 Sep; 265(25):15333-40. PubMed ID: 2394724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential spatial and temporal phosphorylation of the visual receptor, rhodopsin, at two primary phosphorylation sites in mice exposed to light.
    Adams RA; Liu X; Williams DS; Newton AC
    Biochem J; 2003 Sep; 374(Pt 2):537-43. PubMed ID: 12809555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation and dephosphorylation of frog rod outer segment membranes as part of the visual process.
    Miller JA; Paulsen R
    J Biol Chem; 1975 Jun; 250(12):4427-32. PubMed ID: 1079805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc causes an apparent increase in rhodopsin phosphorylation.
    Shuster TA; Martin F; Nagy AK
    Curr Eye Res; 1996 Oct; 15(10):1019-24. PubMed ID: 8921240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photobleaching and cyclic GMP dependences of rhodopsin phosphorylation in rod outer segment.
    Gupta BD
    Indian J Biochem Biophys; 1989 Oct; 26(5):305-10. PubMed ID: 2560768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities.
    Horner TJ; Osawa S; Schaller MD; Weiss ER
    J Biol Chem; 2005 Aug; 280(31):28241-50. PubMed ID: 15946941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C; Kühn H; Chabre M
    Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction.
    Klenchin VA; Calvert PD; Bownds MD
    J Biol Chem; 1995 Jul; 270(27):16147-52. PubMed ID: 7608179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the phosphorylation state of rhodopsin by dopamine.
    Udovichenko IP; Newton AC; Williams DS
    J Biol Chem; 1998 Mar; 273(13):7181-4. PubMed ID: 9516406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells.
    Shi GW; Chen J; Concepcion F; Motamedchaboki K; Marjoram P; Langen R; Chen J
    J Biol Chem; 2005 Dec; 280(50):41184-91. PubMed ID: 16219764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of rhodopsin C-terminal peptide on photoresponses in functionally intact rod outer segments.
    Jindrová H; Detwiler PB
    Physiol Res; 1998; 47(4):279-84. PubMed ID: 9803475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.