These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 7782279)
41. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones. Korenbrot JI; Rebrik TI Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922 [TBL] [Abstract][Full Text] [Related]
42. Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Wilden U Biochemistry; 1995 Jan; 34(4):1446-54. PubMed ID: 7827093 [TBL] [Abstract][Full Text] [Related]
43. Mass spectrometric analysis of the kinetics of in vivo rhodopsin phosphorylation. Lee KA; Craven KB; Niemi GA; Hurley JB Protein Sci; 2002 Apr; 11(4):862-74. PubMed ID: 11910029 [TBL] [Abstract][Full Text] [Related]
44. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods. Frederiksen R; Nymark S; Kolesnikov AV; Berry JD; Adler L; Koutalos Y; Kefalov VJ; Cornwall MC J Gen Physiol; 2016 Jul; 148(1):1-11. PubMed ID: 27353443 [TBL] [Abstract][Full Text] [Related]
45. Contribution of protein kinase C to the phosphorylation of rhodopsin in intact retinas. Udovichenko IP; Newton AC; Williams DS J Biol Chem; 1997 Mar; 272(12):7952-9. PubMed ID: 9065465 [TBL] [Abstract][Full Text] [Related]
46. Dietary n-3 FA modulate long and very long chain FA content, rhodopsin content, and rhodopsin phosphorylation in rat rod outer segment after light exposure. Suh M; Wierzbicki AA; Clandini MT Lipids; 2002 Mar; 37(3):253-60. PubMed ID: 11942475 [TBL] [Abstract][Full Text] [Related]
47. Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. Strissel KJ; Sokolov M; Trieu LH; Arshavsky VY J Neurosci; 2006 Jan; 26(4):1146-53. PubMed ID: 16436601 [TBL] [Abstract][Full Text] [Related]
48. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Chen CK; Burns ME; Spencer M; Niemi GA; Chen J; Hurley JB; Baylor DA; Simon MI Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3718-22. PubMed ID: 10097103 [TBL] [Abstract][Full Text] [Related]
49. Identification of small-molecule allosteric modulators that act as enhancers/disrupters of rhodopsin oligomerization. Getter T; Kemp A; Vinberg F; Palczewski K J Biol Chem; 2021 Dec; 297(6):101401. PubMed ID: 34774799 [TBL] [Abstract][Full Text] [Related]
50. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin. Seno K; Hayashi F J Biol Chem; 2017 Sep; 292(37):15321-15328. PubMed ID: 28747438 [TBL] [Abstract][Full Text] [Related]
51. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction. Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257 [TBL] [Abstract][Full Text] [Related]
52. Mechanistic studies on rhodopsin kinase. Light-dependent phosphorylation of C-terminal peptides of rhodopsin. Brown NG; Fowles C; Sharma R; Akhtar M Eur J Biochem; 1992 Sep; 208(3):659-67. PubMed ID: 1396673 [TBL] [Abstract][Full Text] [Related]
53. Glucose metabolism in photoreceptor outer segments. Its role in phototransduction and in NADPH-requiring reactions. Hsu SC; Molday RS J Biol Chem; 1994 Jul; 269(27):17954-9. PubMed ID: 8027053 [TBL] [Abstract][Full Text] [Related]
54. The role of cholesterol in rod outer segment membranes. Albert AD; Boesze-Battaglia K Prog Lipid Res; 2005; 44(2-3):99-124. PubMed ID: 15924998 [TBL] [Abstract][Full Text] [Related]
55. Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes. Buzhynskyy N; Salesse C; Scheuring S J Mol Recognit; 2011; 24(3):483-9. PubMed ID: 21504027 [TBL] [Abstract][Full Text] [Related]
56. Inhibition of monoclonal antibody binding and proteolysis by light-induced phosphorylation of rhodopsin. Molday RS; MacKenzie D Biochemistry; 1985 Jan; 24(3):776-81. PubMed ID: 2581604 [TBL] [Abstract][Full Text] [Related]
57. Rhodopsin bleaching and rod adaptation. Catt M; Ernst W; Kemp CM; O'Bryan PM Biochem Soc Trans; 1983 Dec; 11(6):676-8. PubMed ID: 6667776 [No Abstract] [Full Text] [Related]
58. Characterization of a truncated form of arrestin isolated from bovine rod outer segments. Palczewski K; Buczylko J; Ohguro H; Annan RS; Carr SA; Crabb JW; Kaplan MW; Johnson RS; Walsh KA Protein Sci; 1994 Feb; 3(2):314-24. PubMed ID: 8003967 [TBL] [Abstract][Full Text] [Related]
59. Light-induced dephosphorylation of two proteins in frog rod outer segments: influence of cyclic nucleotides and calcium. Polans AS; Hermolin J; Bownds MD J Gen Physiol; 1979 Nov; 74(5):595-613. PubMed ID: 229195 [TBL] [Abstract][Full Text] [Related]
60. Identification of phosphorylation sites within vertebrate and invertebrate rhodopsin. Ohguro H Methods Enzymol; 2000; 316():482-92. PubMed ID: 10800696 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]