These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 7782725)
21. Cholesterol-raising diterpenes in types of coffee commonly consumed in Singapore, Indonesia and India and associations with blood lipids: a survey and cross sectional study. Naidoo N; Chen C; Rebello SA; Speer K; Tai ES; Lee J; Buchmann S; Koelling-Speer I; van Dam RM Nutr J; 2011 May; 10():48. PubMed ID: 21569629 [TBL] [Abstract][Full Text] [Related]
22. Validity of animal models for the cholesterol-raising effects of coffee diterpenes in human subjects. de Roos B; Sawyer JK; Katan MB; Rudel LL Proc Nutr Soc; 1999 Aug; 58(3):551-7. PubMed ID: 10604186 [TBL] [Abstract][Full Text] [Related]
23. Covering the different steps of the coffee processing: Can headspace VOC emissions be exploited to successfully distinguish between Arabica and Robusta? Colzi I; Taiti C; Marone E; Magnelli S; Gonnelli C; Mancuso S Food Chem; 2017 Dec; 237():257-263. PubMed ID: 28763994 [TBL] [Abstract][Full Text] [Related]
25. Diterpenes from coffee beans decrease serum levels of lipoprotein(a) in humans: results from four randomised controlled trials. Urgert R; Weusten-van der Wouw MP; Hovenier R; Meyboom S; Beynen AC; Katan MB Eur J Clin Nutr; 1997 Jul; 51(7):431-6. PubMed ID: 9234024 [TBL] [Abstract][Full Text] [Related]
26. Limited genotypic and geographic variability of 16-O-methylated diterpene content in Coffea arabica green beans. Portaluri V; Thomas F; Guyader S; Jamin E; Bertrand B; Remaud GS; Schievano E; Mammi S; Guercia E; Navarini L Food Chem; 2020 Nov; 329():127129. PubMed ID: 32497844 [TBL] [Abstract][Full Text] [Related]
27. Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Ivamoto ST; Sakuray LM; Ferreira LP; Kitzberger CSG; Scholz MBS; Pot D; Leroy T; Vieira LGE; Domingues DS; Pereira LFP Plant Physiol Biochem; 2017 Feb; 111():340-347. PubMed ID: 28002787 [TBL] [Abstract][Full Text] [Related]
28. The hypercholesterolemic effect of cafestol in coffee oil in gerbils and rats. Terpstra AH; Katan MB; Weusten-van der Wouw MP; de Roos B ; Beynen AC J Nutr Biochem; 2000 Jun; 11(6):311-7. PubMed ID: 11002126 [TBL] [Abstract][Full Text] [Related]
29. Rapid authentication of coffee blends and quantification of 16-O-methylcafestol in roasted coffee beans by nuclear magnetic resonance. Schievano E; Finotello C; De Angelis E; Mammi S; Navarini L J Agric Food Chem; 2014 Dec; 62(51):12309-14. PubMed ID: 25431971 [TBL] [Abstract][Full Text] [Related]
30. The cholesterol-raising factor from coffee beans. Urgert R; Katan MB Annu Rev Nutr; 1997; 17():305-24. PubMed ID: 9240930 [TBL] [Abstract][Full Text] [Related]
31. The cholesterol-raising diterpenes from coffee beans increase serum lipid transfer protein activity levels in humans. van Tol A; Urgert R; de Jong-Caesar R; van Gent T; Scheek LM; de Roos B; Katan MB Atherosclerosis; 1997 Jul; 132(2):251-4. PubMed ID: 9242972 [TBL] [Abstract][Full Text] [Related]
32. Recent Updates on the Functional Impact of Kahweol and Cafestol on Cancer. Eldesouki S; Qadri R; Abu Helwa R; Barqawi H; Bustanji Y; Abu-Gharbieh E; El-Huneidi W Molecules; 2022 Oct; 27(21):. PubMed ID: 36364160 [TBL] [Abstract][Full Text] [Related]
33. Analysis of the content of the diterpenes cafestol and kahweol in coffee brews. Gross G; Jaccaud E; Huggett AC Food Chem Toxicol; 1997 Jun; 35(6):547-54. PubMed ID: 9225012 [TBL] [Abstract][Full Text] [Related]
34. Diterpenes stability of commercial blends of roasted and ground coffees packed in copolymer coupled with aluminium and eco-friendly capsules. Strocchi G; Müller AB; Kuhnert N; Martina K; Bicchi C; Liberto E Food Res Int; 2023 Dec; 174(Pt 1):113577. PubMed ID: 37986525 [TBL] [Abstract][Full Text] [Related]
35. Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends. Cagliani LR; Pellegrino G; Giugno G; Consonni R Talanta; 2013 Mar; 106():169-73. PubMed ID: 23598112 [TBL] [Abstract][Full Text] [Related]
36. [Coffea arabica--production, botanical classification, new components and active agents and their pharmacological effects]. Augustín J Ceska Slov Farm; 2000 May; 49(3):107-12. PubMed ID: 10953453 [TBL] [Abstract][Full Text] [Related]
37. Oleosin gene family of Coffea canephora: quantitative expression analysis of five oleosin genes in developing and germinating coffee grain. Simkin AJ; Qian T; Caillet V; Michoux F; Ben Amor M; Lin C; Tanksley S; McCarthy J J Plant Physiol; 2006 May; 163(7):691-708. PubMed ID: 16442665 [TBL] [Abstract][Full Text] [Related]
38. Immunoexpression of aortic endothelial P-selectin and serum apolipoprotein A-1 levels after administration of arabica ( Ekawati W; Heriansyah T; Kamarlis RK; Purnawarman A; Sofyan H; Enitan SS Narra J; 2024 Aug; 4(2):e794. PubMed ID: 39280317 [TBL] [Abstract][Full Text] [Related]
39. Optimization of the isolation and quantitation of kahweol and cafestol in green coffee oil. Chartier A; Beaumesnil M; de Oliveira AL; Elfakir C; Bostyn S Talanta; 2013 Dec; 117():102-11. PubMed ID: 24209317 [TBL] [Abstract][Full Text] [Related]
40. Authentication of Italian Espresso coffee blends through the GC peak ratio between kahweol and 16-O-methylcafestol. Pacetti D; Boselli E; Balzano M; Frega NG Food Chem; 2012 Dec; 135(3):1569-74. PubMed ID: 22953895 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]