These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7782789)

  • 1. An X-ray absorption spectroscopy study of the interactions of Ni2+ with yeast enolase.
    Wang S; Scott RA; Lebioda L; Zhou ZH; Brewer JM
    J Inorg Biochem; 1995 May; 58(3):209-21. PubMed ID: 7782789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution.
    Wedekind JE; Poyner RR; Reed GH; Rayment I
    Biochemistry; 1994 Aug; 33(31):9333-42. PubMed ID: 8049235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution.
    Larsen TM; Wedekind JE; Rayment I; Reed GH
    Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular dichroism (CD) studies on yeast enolase: activation by divalent cations.
    Collins KM; Brewer JM
    J Inorg Biochem; 1982 Aug; 17(1):15-28. PubMed ID: 6750044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII--enzyme complex from yeast at 1.9 A resolution.
    Wedekind JE; Reed GH; Rayment I
    Biochemistry; 1995 Apr; 34(13):4325-30. PubMed ID: 7703246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of activating and nonactivating metal ion binding to yeast enolase.
    Brewer JM; Carreira LA; Collins KM; Duvall MC; Cohen C; DerVartanian DV
    J Inorg Biochem; 1983 Nov; 19(3):255-67. PubMed ID: 6358410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic metal ion binding in enolase: the crystal structure of an enolase-Mn2+-phosphonoacetohydroxamate complex at 2.4-A resolution.
    Zhang E; Hatada M; Brewer JM; Lebioda L
    Biochemistry; 1994 May; 33(20):6295-300. PubMed ID: 8193144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of enolase: the crystal structure of enolase-Mg2(+)-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-A resolution.
    Lebioda L; Stec B
    Biochemistry; 1991 Mar; 30(11):2817-22. PubMed ID: 2007120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EPR of Cu+2 binding to apo-yeast enolase.
    Dickinson LC; Rose SL; Westhead EW
    J Inorg Biochem; 1980 Dec; 13(4):353-66. PubMed ID: 6257840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of the role of catalytic and conformational metals in producing enzymatic activity in yeast enolase.
    Brewer JM; Collins KM
    J Inorg Biochem; 1980 Oct; 13(2):151-64. PubMed ID: 7000980
    [No Abstract]   [Full Text] [Related]  

  • 11. pH dependence of the reaction catalyzed by yeast Mg-enolase.
    Vinarov DA; Nowak T
    Biochemistry; 1998 Oct; 37(43):15238-46. PubMed ID: 9790688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calorimetric studies of the role of magnesium ions in yeast enolase catalysis.
    Faller LD; Johnson AM
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1083-7. PubMed ID: 4598292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium ion requirements for yeast enolase activity.
    Faller LD; Baroudy BM; Johnson AM; Ewall RX
    Biochemistry; 1977 Aug; 16(17):3864-9. PubMed ID: 332224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the bis divalent cation complex with phosphonoacetohydroxamate at the active site of enolase.
    Poyner RR; Reed GH
    Biochemistry; 1992 Aug; 31(31):7166-73. PubMed ID: 1322695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The catalytic Mn2+ sites in the enolase-inhibitor complex: crystallography, single-crystal EPR, and DFT calculations.
    Carmieli R; Larsen TM; Reed GH; Zein S; Neese F; Goldfarb D
    J Am Chem Soc; 2007 Apr; 129(14):4240-52. PubMed ID: 17367133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and physical properties of Co2+ enolase.
    Rose SL; Dickinson LC; Westhead EW
    J Biol Chem; 1984 Apr; 259(7):4405-13. PubMed ID: 6323470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction intermediate analogues for enolase.
    Anderson VE; Weiss PM; Cleland WW
    Biochemistry; 1984 Jun; 23(12):2779-86. PubMed ID: 6380574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium(II)-113 NMR studies of the mechanism of metal ion activation of yeast enolase.
    Spencer SG; Brewer JM; Ellis PD
    J Inorg Biochem; 1985 May; 24(1):47-57. PubMed ID: 3891917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of fluoride by yeast enolase.
    Bunick FJ; Kashket S
    Biochemistry; 1982 Aug; 21(18):4285-90. PubMed ID: 6751386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of terbium (III) to yeast enolase.
    Brewer JM; Carreira LA; Irwin RM; Elliott JI
    J Inorg Biochem; 1981 Feb; 14(1):33-44. PubMed ID: 6783735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.