BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7782996)

  • 1. Synthetic polymers as materials for artificial vitreous body: review and recent advances.
    Chirila TV; Tahija S; Hong Y; Vijayasekaran S; Constable IJ
    J Biomater Appl; 1994 Oct; 9(2):121-37. PubMed ID: 7782996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric hydrogel as a vitreous substitute: current research, challenges, and future directions.
    Wang T; Ran R; Ma Y; Zhang M
    Biomed Mater; 2021 Jun; 16(4):. PubMed ID: 34038870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ formation of hydrogels as vitreous substitutes: Viscoelastic comparison to porcine vitreous.
    Swindle KE; Hamilton PD; Ravi N
    J Biomed Mater Res A; 2008 Dec; 87(3):656-65. PubMed ID: 18189301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in Using Biomaterials as Vitreous Substitutes.
    Su X; Tan MJ; Li Z; Wong M; Rajamani L; Lingam G; Loh XJ
    Biomacromolecules; 2015 Oct; 16(10):3093-102. PubMed ID: 26366887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitreous substitutes: a comprehensive review.
    Kleinberg TT; Tzekov RT; Stein L; Ravi N; Kaushal S
    Surv Ophthalmol; 2011; 56(4):300-23. PubMed ID: 21601902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymers of 1-vinyl-2-pyrrolidinone as potential vitreous substitutes: physical selection.
    Hong Y; Chirila TV; Cuypers MJ; Constable IJ
    J Biomater Appl; 1996 Oct; 11(2):135-81. PubMed ID: 8913849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Artificial vitreous body: Strategies for vitreous body substitutes].
    Mariacher S; Szurman P
    Ophthalmologe; 2015 Jul; 112(7):572-9. PubMed ID: 26077344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitreous substitutes: An overview of the properties, importance, and development.
    Yadav I; Purohit SD; Singh H; Bhushan S; Yadav MK; Velpandian T; Chawla R; Hazra S; Mishra NC
    J Biomed Mater Res B Appl Biomater; 2021 Aug; 109(8):1156-1176. PubMed ID: 33319466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards an ideal biomaterial for vitreous replacement: Historical overview and future trends.
    Baino F
    Acta Biomater; 2011 Mar; 7(3):921-35. PubMed ID: 21050899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial vitreous replacements.
    Soman N; Banerjee R
    Biomed Mater Eng; 2003; 13(1):59-74. PubMed ID: 12652023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new strategy to replace the natural vitreous by a novel capsular artificial vitreous body with pressure-control valve.
    Gao Q; Mou S; Ge J; To CH; Hui Y; Liu A; Wang Z; Long C; Tan J
    Eye (Lond); 2008 Mar; 22(3):461-8. PubMed ID: 17525767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Polysaccharide- and Synthetic Polymer-Based Vitreous Substitutes.
    Naik K; Du Toit LC; Ally N; Choonara YE
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36839888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Vitrectomy: in search of the ideal vitreous replacement].
    Steijns D; Stilma JS
    Ned Tijdschr Geneeskd; 2009; 153():A433. PubMed ID: 19857280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of Fourier transform infrared spectrometry for monitoring the retention of polymers in the vitreous humour.
    Dalton PD; Jefferson A; Hong Y; Chirila TV; Vijayasekaran S; Tahija SG
    Biomed Mater Eng; 1995; 5(3):185-93. PubMed ID: 8555968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitreous substitutes: the present and the future.
    Donati S; Caprani SM; Airaghi G; Vinciguerra R; Bartalena L; Testa F; Mariotti C; Porta G; Simonelli F; Azzolini C
    Biomed Res Int; 2014; 2014():351804. PubMed ID: 24877085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport.
    Tram NK; Maxwell CJ; Swindle-Reilly KE
    Curr Eye Res; 2021 Apr; 46(4):429-444. PubMed ID: 33040616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute.
    Schramm C; Spitzer MS; Henke-Fahle S; Steinmetz G; Januschowski K; Heiduschka P; Geis-Gerstorfer J; Biedermann T; Bartz-Schmidt KU; Szurman P
    Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):613-21. PubMed ID: 22199245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel vitreous substitutes: the next frontier in vitreoretinal surgery.
    Schulz A; Januschowski K; Szurman P
    Curr Opin Ophthalmol; 2021 May; 32(3):288-293. PubMed ID: 33630788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New biodegradable networks of poly(N-vinylpyrrolidinone) designed for controlled nonburst degradation in the vitreous body.
    Bruining MJ; Edelbroek-Hoogendoorn PS; Blaauwgeers HG; Mooy CM; Hendrikse FH; Koole LH
    J Biomed Mater Res; 1999 Nov; 47(2):189-97. PubMed ID: 10449629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of an injectable in situ gelation biomaterials for vitreous substitute.
    Annaka M; Mortensen K; Vigild ME; Matsuura T; Tsuji S; Ueda T; Tsujinaka H
    Biomacromolecules; 2011 Nov; 12(11):4011-21. PubMed ID: 21988210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.