BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 7782996)

  • 21. [Induction of posterior detachment of the vitreous body by intraoperative vitreo-syneresis with injection of water-soluble polymers (an experimental-morphological study)].
    Skvorchenko DO; Khoroshilova-Maslova IP; Andreeva LD; Sharafetdinov IKh; Shtil'man MI; Maklakova IA; Uzunian DG
    Vestn Oftalmol; 2001; 117(3):16-20. PubMed ID: 11521428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current Situation and Challenges in Vitreous Substitutes.
    Mondelo-García C; Bandín-Vilar E; García-Quintanilla L; Castro-Balado A; Del Amo EM; Gil-Martínez M; Blanco-Teijeiro MJ; González-Barcia M; Zarra-Ferro I; Fernández-Ferreiro A; Otero-Espinar FJ
    Macromol Biosci; 2021 Aug; 21(8):e2100066. PubMed ID: 33987966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials.
    Kolk A; Handschel J; Drescher W; Rothamel D; Kloss F; Blessmann M; Heiland M; Wolff KD; Smeets R
    J Craniomaxillofac Surg; 2012 Dec; 40(8):706-18. PubMed ID: 22297272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biocompatibility assessment of liquid artificial vitreous replacements: relevance of in vitro studies.
    Matteucci A; Formisano G; Paradisi S; Carnovale-Scalzo G; Scorcia G; Caiazza S; Hoerauf H; Malchiodi-Albedi F
    Surv Ophthalmol; 2007; 52(3):289-99. PubMed ID: 17472804
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The biocompatibility of a polyelectrolyte vitreous body substitute on a high resistance in vitro model of the blood-retinal barrier.
    Strotmann F; Wolf I; Galla HJ
    J Biomater Appl; 2013 Sep; 28(3):334-42. PubMed ID: 22693043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Technical standards of a foldable capsular vitreous body in terms of mechanical, optical, and biocompatible properties.
    Liu Y; Jiang Z; Gao Q; Ge J; Chen J; Cao X; Shen Q; Ma P
    Artif Organs; 2010 Oct; 34(10):836-45. PubMed ID: 20618225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional evaluation of a novel vitreous substitute using polyethylene glycol sols injected into a foldable capsular vitreous body.
    Chen H; Feng S; Liu Y; Huang Z; Sun X; Zhou L; Lu X; Gao Q
    J Biomed Mater Res A; 2013 Sep; 101(9):2538-47. PubMed ID: 23359564
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Refractive shifts in four selected artificial vitreous substitutes based on Gullstrand-Emsley and Liou-Brennan schematic eyes.
    Gao Q; Chen X; Ge J; Liu Y; Jiang Z; Lin Z; Liu Y
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3529-34. PubMed ID: 19264881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vitreous Substitutes as Drug Release Systems.
    Schulz A; Szurman P
    Transl Vis Sci Technol; 2022 Sep; 11(9):14. PubMed ID: 36125790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current trends in the development of synthetic materials for medical applications.
    Kohn J
    Med Device Technol; 1990; 1(6):34-8. PubMed ID: 10171150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic polymers.
    van Beusekom HM; Schwartz RS; van der Giessen WJ
    Semin Interv Cardiol; 1998; 3(3-4):145-8. PubMed ID: 10406684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.
    Su WY; Chen KH; Chen YC; Lee YH; Tseng CL; Lin FH
    J Biomater Sci Polym Ed; 2011; 22(13):1777-97. PubMed ID: 20843434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Current requirements for polymeric biomaterials in ear, nose and throat medicine].
    Sternberg K
    Laryngorhinootologie; 2009 May; 88 Suppl 1():S1-11. PubMed ID: 19353451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intraocular degradation behavior of crosslinked and linear poly(trimethylene carbonate) and poly(D,L-lactic acid).
    Jansen J; Koopmans SA; Los LI; van der Worp RJ; Podt JG; Hooymans JM; Feijen J; Grijpma DW
    Biomaterials; 2011 Aug; 32(22):4994-5002. PubMed ID: 21507481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural polysaccharides as electroactive polymers.
    Finkenstadt VL
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):735-45. PubMed ID: 15724215
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material.
    Tao Y; Tong X; Zhang Y; Lai J; Huang Y; Jiang YR; Guo BH
    Acta Biomater; 2013 Feb; 9(2):5022-30. PubMed ID: 23022890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biocompatibility of polyvinylalcohol gel as a vitreous substitute.
    Maruoka S; Matsuura T; Kawasaki K; Okamoto M; Yoshiaki H; Kodama M; Sugiyama M; Annaka M
    Curr Eye Res; 2006; 31(7-8):599-606. PubMed ID: 16877268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Biocompatibility of polyvinylalcohol gel as a vitreous substitute].
    Hara Y; Matsuura T; Taketani F; Tsukamoto M; Nawa Y; Saishin M; Kodama R; Yamauchi A
    Nippon Ganka Gakkai Zasshi; 1998 Apr; 102(4):247-55. PubMed ID: 9594541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The use of porous polysulfone as a new material for implantation into the orbit].
    Pisarev VB; Mukhaev KhKh; Brel' AK
    Biull Eksp Biol Med; 1996 Jun; 121(6):707-10. PubMed ID: 9035773
    [No Abstract]   [Full Text] [Related]  

  • 40. Future materials for foot surgery.
    Latour RA
    Clin Podiatr Med Surg; 1995 Jul; 12(3):519-44. PubMed ID: 7553538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.