These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 7783204)

  • 1. Slow ligand-induced transitions in the allosteric phosphofructokinase from Escherichia coli.
    Auzat I; Gawlita E; Garel JR
    J Mol Biol; 1995 Jun; 249(2):478-92. PubMed ID: 7783204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-induced conformational transitions in Escherichia coli phosphofructokinase 2: evidence for an allosteric site for MgATP2-.
    Guixé V; Rodríguez PH; Babul J
    Biochemistry; 1998 Sep; 37(38):13269-75. PubMed ID: 9748334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conformational transition involved in antagonistic substrate binding to the allosteric phosphofructokinase from Escherichia coli.
    Deville-Bonne D; Garel JR
    Biochemistry; 1992 Feb; 31(6):1695-700. PubMed ID: 1531298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification of SH groups of E. coli phosphofructokinase-2 induces subunit dissociation: monomers are inactive but preserve ligand binding properties.
    Guixé V
    Arch Biochem Biophys; 2000 Apr; 376(2):313-9. PubMed ID: 10775417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure of a two-state model to describe the influence of phospho(enol)pyruvate on phosphofructokinase from Escherichia coli.
    Johnson JL; Reinhart GD
    Biochemistry; 1997 Oct; 36(42):12814-22. PubMed ID: 9335538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for two different mechanisms triggering the change in quaternary structure of the allosteric enzyme, glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Ramírez-Costa M; De Anda-Aguilar L; Hinojosa-Ocaña P; Calcagno ML
    Biochemistry; 2005 Feb; 44(4):1127-35. PubMed ID: 15667206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-steady state quantification of the allosteric influence of Escherichia coli phosphofructokinase.
    Pham AS; Reinhart GD
    J Biol Chem; 2001 Sep; 276(37):34388-95. PubMed ID: 11443117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypercooperativity induced by interface mutations in the phosphofructokinase from Escherichia coli.
    Auzat I; Le Bras G; Garel JR
    J Mol Biol; 1995 Feb; 246(2):248-53. PubMed ID: 7869376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active-site mutants altering the cooperativity of E. coli phosphofructokinase.
    Berger SA; Evans PR
    Nature; 1990 Feb; 343(6258):575-6. PubMed ID: 2137204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state fluorescence of Escherichia coli phosphofructokinase reveals a regulatory role for ATP.
    Berger SA; Evans PR
    Biochemistry; 1991 Aug; 30(34):8477-80. PubMed ID: 1832014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disentangling the web of allosteric communication in a homotetramer: heterotropic activation in phosphofructokinase from Escherichia coli.
    Fenton AW; Paricharttanakul NM; Reinhart GD
    Biochemistry; 2004 Nov; 43(44):14104-10. PubMed ID: 15518560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent binding of MgADP to the E187A mutant of Escherichia coli phosphofructokinase in the absence of allosteric effects.
    Pham AS; Janiak-Spens F; Reinhart GD
    Biochemistry; 2001 Apr; 40(13):4140-9. PubMed ID: 11300795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Sosa-Peinado A; Rudiño-Piñera E; Horjales E; Calcagno ML
    J Mol Biol; 2002 May; 319(1):183-9. PubMed ID: 12051945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH dependence of the kinetic properties of allosteric phosphofructokinase from Escherichia coli.
    Deville-Bonne D; Bourgain F; Garel JR
    Biochemistry; 1991 Jun; 30(23):5750-4. PubMed ID: 1828369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of substrate contact residues important for the allosteric regulation of phosphofructokinase from Eschericia coli.
    Fenton AW; Paricharttanakul NM; Reinhart GD
    Biochemistry; 2003 Jun; 42(21):6453-9. PubMed ID: 12767227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose 1,6-bisphosphate-activated pyruvate kinase from E. coli: ligand promoted conformational changes.
    Speranza ML; Valentini G; Ferri G; Malcovati M
    Ital J Biochem; 1992; 41(3):200-11. PubMed ID: 1500282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric effects of carbamoyl phosphate synthetase from Escherichia coli are entropy-driven.
    Braxton BL; Mullins LS; Raushel FM; Reinhart GD
    Biochemistry; 1996 Sep; 35(36):11918-24. PubMed ID: 8794775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric regulation of biosynthetic threonine deaminase from Escherichia coli: effects of isoleucine and valine on active-site ligand binding and catalysis.
    Eisenstein E
    Arch Biochem Biophys; 1995 Jan; 316(1):311-8. PubMed ID: 7840631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.
    Cliff MJ; Kad NM; Hay N; Lund PA; Webb MR; Burston SG; Clarke AR
    J Mol Biol; 1999 Oct; 293(3):667-84. PubMed ID: 10543958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate antagonism in the kinetic mechanism of E. coli phosphofructokinase-1.
    Deville-Bonne D; Laine R; Garel JR
    FEBS Lett; 1991 Sep; 290(1-2):173-6. PubMed ID: 1833241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.