BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 7783222)

  • 1. Divergence of glutamate and glutamine aminoacylation pathways: providing the evolutionary rationale for mischarging.
    Rogers KC; Söll D
    J Mol Evol; 1995 May; 40(5):476-81. PubMed ID: 7783222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-trna synthetase.
    Gagnon Y; Lacoste L; Champagne N; Lapointe J
    J Biol Chem; 1996 Jun; 271(25):14856-63. PubMed ID: 8662929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Misaminoacylation and transamidation are required for protein biosynthesis in Lactobacillus bulgaricus.
    Schön A; Hottinger H; Söll D
    Biochimie; 1988 Mar; 70(3):391-4. PubMed ID: 3139057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biogenesis of glutaminyl-mt tRNAGln in human mitochondria.
    Nagao A; Suzuki T; Katoh T; Sakaguchi Y; Suzuki T
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16209-14. PubMed ID: 19805282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation.
    Sherman JM; Rogers MJ; Söll D
    Nucleic Acids Res; 1992 Jun; 20(11):2847-52. PubMed ID: 1377381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamyl-tRNA sythetase.
    Freist W; Gauss DH; Söll D; Lapointe J
    Biol Chem; 1997 Nov; 378(11):1313-29. PubMed ID: 9426192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching the amino acid specificity of an aminoacyl-tRNA synthetase.
    Agou F; Quevillon S; Kerjan P; Mirande M
    Biochemistry; 1998 Aug; 37(32):11309-14. PubMed ID: 9698378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The archaeal transamidosome for RNA-dependent glutamine biosynthesis.
    Rampias T; Sheppard K; Söll D
    Nucleic Acids Res; 2010 Sep; 38(17):5774-83. PubMed ID: 20457752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth inhibition of Escherichia coli during heterologous expression of Bacillus subtilis glutamyl-tRNA synthetase that catalyzes the formation of mischarged glutamyl-tRNA1 Gln.
    Baick JW; Yoon JH; Namgoong S; Söll D; Kim SI; Eom SH; Hong KW
    J Microbiol; 2004 Jun; 42(2):111-6. PubMed ID: 15357304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design and directed evolution of a bacterial-type glutaminyl-tRNA synthetase precursor.
    Guo LT; Helgadóttir S; Söll D; Ling J
    Nucleic Acids Res; 2012 Sep; 40(16):7967-74. PubMed ID: 22661575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major identity element of glutamine tRNAs from Bacillus subtilis and Escherichia coli in the reaction with B. subtilis glutamyl-tRNA synthetase.
    Kim SI; Söll D
    Mol Cells; 1998 Aug; 8(4):459-65. PubMed ID: 9749534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of tRNAGln by Helicobacter pylori GluRS2--a tRNAGln-specific glutamyl-tRNA synthetase.
    Chang KM; Hendrickson TL
    Nucleic Acids Res; 2009 Nov; 37(20):6942-9. PubMed ID: 19755501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the glutamyl-tRNA(Gln)-to-glutaminyl-tRNA(Gln) amidotransferase reaction of Bacillus subtilis.
    Strauch MA; Zalkin H; Aronson AI
    J Bacteriol; 1988 Feb; 170(2):916-20. PubMed ID: 2892827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of an archaeal non-discriminating glutamyl-tRNA synthetase: a missing link in the evolution of Gln-tRNAGln formation.
    Nureki O; O'Donoghue P; Watanabe N; Ohmori A; Oshikane H; Araiso Y; Sheppard K; Söll D; Ishitani R
    Nucleic Acids Res; 2010 Nov; 38(20):7286-97. PubMed ID: 20601684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translating organellar glutamine codons: a case by case scenario?
    Frechin M; Duchêne AM; Becker HD
    RNA Biol; 2009; 6(1):31-4. PubMed ID: 19106621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases.
    Frugier M; Söll D; Giegé R; Florentz C
    Biochemistry; 1994 Aug; 33(33):9912-21. PubMed ID: 8060999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gln-tRNAGln synthesis in a dynamic transamidosome from Helicobacter pylori, where GluRS2 hydrolyzes excess Glu-tRNAGln.
    Huot JL; Fischer F; Corbeil J; Madore E; Lorber B; Diss G; Hendrickson TL; Kern D; Lapointe J
    Nucleic Acids Res; 2011 Nov; 39(21):9306-15. PubMed ID: 21813455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glutaminyl-transfer RNA synthetase of Escherichia coli. Purification, structure and function relationship.
    Kern D; Potier S; Lapointe J; Boulanger Y
    Biochim Biophys Acta; 1980 Mar; 607(1):65-80. PubMed ID: 6989402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.