BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7783622)

  • 21. Structural and functional analyses of the repressor, RbsR, of the ribose operon of Escherichia coli.
    Mauzy CA; Hermodson MA
    Protein Sci; 1992 Jul; 1(7):831-42. PubMed ID: 1304369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and molecular characterization of the aco genes encoding the Pelobacter carbinolicus acetoin dehydrogenase enzyme system.
    Oppermann FB; Steinbüchel A
    J Bacteriol; 1994 Jan; 176(2):469-85. PubMed ID: 8110297
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical and molecular characterization of the Clostridium magnum acetoin dehydrogenase enzyme system.
    Krüger N; Oppermann FB; Lorenzl H; Steinbüchel A
    J Bacteriol; 1994 Jun; 176(12):3614-30. PubMed ID: 8206840
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Escherichia coli OxyR protein represses the unmethylated bacteriophage Mu mom operon without blocking binding of the transcriptional activator C.
    Sun W; Hattman S
    Nucleic Acids Res; 1996 Oct; 24(20):4042-9. PubMed ID: 8918810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymological and physiological consequences of restructuring the lipoyl domain content of the pyruvate dehydrogenase complex of Escherichia coli.
    Guest JR; Attwood MM; Machado RS; Matqi KY; Shaw JE; Turner SL
    Microbiology (Reading); 1997 Feb; 143 ( Pt 2)():457-466. PubMed ID: 9043123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA-binding properties of the BetI repressor protein of Escherichia coli: the inducer choline stimulates BetI-DNA complex formation.
    Rkenes TP; Lamark T; Strøm AR
    J Bacteriol; 1996 Mar; 178(6):1663-70. PubMed ID: 8626295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli.
    Anderson LA; Palmer T; Price NC; Bornemann S; Boxer DH; Pau RN
    Eur J Biochem; 1997 May; 246(1):119-26. PubMed ID: 9210473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis.
    Mota LJ; Tavares P; Sá-Nogueira I
    Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability.
    Yamamoto K; Ogasawara H; Fujita N; Utsumi R; Ishihama A
    Mol Microbiol; 2002 Jul; 45(2):423-38. PubMed ID: 12123454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pyruvate dehydrogenase complex of Escherichia coli K12. Nucleotide sequence encoding the dihydrolipoamide acetyltransferase component.
    Stephens PE; Darlison MG; Lewis HM; Guest JR
    Eur J Biochem; 1983 Jul; 133(3):481-9. PubMed ID: 6345153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An analysis of the binding of repressor protein ModE to modABCD (molybdate transport) operator/promoter DNA of Escherichia coli.
    Grunden AM; Self WT; Villain M; Blalock JE; Shanmugam KT
    J Biol Chem; 1999 Aug; 274(34):24308-15. PubMed ID: 10446207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing.
    Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D
    J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amino acid substitutions at glutamate-354 in dihydrolipoamide dehydrogenase of Escherichia coli lower the sensitivity of pyruvate dehydrogenase to NADH.
    Sun Z; Do PM; Rhee MS; Govindasamy L; Wang Q; Ingram LO; Shanmugam KT
    Microbiology (Reading); 2012 May; 158(Pt 5):1350-1358. PubMed ID: 22343352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lrp is a direct repressor of the dad operon in Escherichia coli.
    Mathew E; Zhi J; Freundlich M
    J Bacteriol; 1996 Dec; 178(24):7234-40. PubMed ID: 8955407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acetoin catabolic system of Klebsiella pneumoniae CG43: sequence, expression, and organization of the aco operon.
    Deng WL; Chang HY; Peng HL
    J Bacteriol; 1994 Jun; 176(12):3527-35. PubMed ID: 8206829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of expression of the Tn10-encoded tetracycline resistance operon. II. Interaction of RNA polymerase and TET repressor with the tet operon regulatory region.
    Hillen W; Schollmeier K; Gatz C
    J Mol Biol; 1984 Jan; 172(2):185-201. PubMed ID: 6229640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli.
    Martin RG; Jair KW; Wolf RE; Rosner JL
    J Bacteriol; 1996 Apr; 178(8):2216-23. PubMed ID: 8636021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anaerobic regulation of the Escherichia coli dmsABC operon requires the molybdate-responsive regulator ModE.
    McNicholas PM; Chiang RC; Gunsalus RP
    Mol Microbiol; 1998 Jan; 27(1):197-208. PubMed ID: 9466267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion.
    Augustin LB; Jacobson BA; Fuchs JA
    J Bacteriol; 1994 Jan; 176(2):378-87. PubMed ID: 8288532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two different modes of transcription repression of the Escherichia coli acetate operon by IclR.
    Yamamoto K; Ishihama A
    Mol Microbiol; 2003 Jan; 47(1):183-94. PubMed ID: 12492863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.