These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7783655)

  • 1. Role of membrane transport in interorgan amino acid flow between muscle and small intestine.
    Biolo G; Zhang XJ; Wolfe RR
    Metabolism; 1995 Jun; 44(6):719-24. PubMed ID: 7783655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse regulation of protein turnover and amino acid transport in skeletal muscle of hypercatabolic patients.
    Biolo G; Fleming RY; Maggi SP; Nguyen TT; Herndon DN; Wolfe RR
    J Clin Endocrinol Metab; 2002 Jul; 87(7):3378-84. PubMed ID: 12107253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harry M. Vars Research Award. A new model to determine in vivo the relationship between amino acid transmembrane transport and protein kinetics in muscle.
    Biolo G; Chinkes D; Zhang XJ; Wolfe RR
    JPEN J Parenter Enteral Nutr; 1992; 16(4):305-15. PubMed ID: 1640627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin action on muscle protein kinetics and amino acid transport during recovery after resistance exercise.
    Biolo G; Williams BD; Fleming RY; Wolfe RR
    Diabetes; 1999 May; 48(5):949-57. PubMed ID: 10331397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein synthesis and breakdown in skin and muscle: a leg model of amino acid kinetics.
    Biolo G; Gastaldelli A; Zhang XJ; Wolfe RR
    Am J Physiol; 1994 Sep; 267(3 Pt 1):E467-74. PubMed ID: 7943227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologic hyperinsulinemia stimulates protein synthesis and enhances transport of selected amino acids in human skeletal muscle.
    Biolo G; Declan Fleming RY; Wolfe RR
    J Clin Invest; 1995 Feb; 95(2):811-9. PubMed ID: 7860765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracers to investigate protein and amino acid metabolism in human subjects.
    Wagenmakers AJ
    Proc Nutr Soc; 1999 Nov; 58(4):987-1000. PubMed ID: 10817167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of insulin on system A amino acid transport in human skeletal muscle.
    Bonadonna RC; Saccomani MP; Cobelli C; DeFronzo RA
    J Clin Invest; 1993 Feb; 91(2):514-21. PubMed ID: 8432860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport kinetics of amino acids across the resting human leg.
    Lundholm K; Bennegård K; Zachrisson H; Lundgren F; Edén E; Möller-Loswick AC
    J Clin Invest; 1987 Sep; 80(3):763-71. PubMed ID: 3624488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans.
    Biolo G; Maggi SP; Williams BD; Tipton KD; Wolfe RR
    Am J Physiol; 1995 Mar; 268(3 Pt 1):E514-20. PubMed ID: 7900797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane transport and intracellular kinetics of amino acids in human skeletal muscle.
    Biolo G; Fleming RY; Maggi SP; Wolfe RR
    Am J Physiol; 1995 Jan; 268(1 Pt 1):E75-84. PubMed ID: 7840186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testosterone injection stimulates net protein synthesis but not tissue amino acid transport.
    Ferrando AA; Tipton KD; Doyle D; Phillips SM; Cortiella J; Wolfe RR
    Am J Physiol; 1998 Nov; 275(5):E864-71. PubMed ID: 9815007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of amino acids and glucose on exercise-induced gut and skeletal muscle proteolysis in dogs.
    Hamada K; Matsumoto K; Okamura K; Doi T; Minehira K; Shimizu S
    Metabolism; 1999 Feb; 48(2):161-6. PubMed ID: 10024075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of amino acid transport through interstitial fluid: assessment of four-compartment modeling for muscle protein kinetics.
    Gore DC; Wolfe RR; Chinkes DL
    Am J Physiol Endocrinol Metab; 2007 Jan; 292(1):E319-23. PubMed ID: 16954330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo muscle amino acid transport involves two distinct processes.
    Miller S; Chinkes D; MacLean DA; Gore D; Wolfe RR
    Am J Physiol Endocrinol Metab; 2004 Jul; 287(1):E136-41. PubMed ID: 15191883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid repletion does not decrease muscle protein catabolism during hemodialysis.
    Raj DS; Adeniyi O; Dominic EA; Boivin MA; McClelland S; Tzamaloukas AH; Morgan N; Gonzales L; Wolfe R; Ferrando A
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1534-42. PubMed ID: 17264222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction.
    Volpi E; Mittendorfer B; Wolf SE; Wolfe RR
    Am J Physiol; 1999 Sep; 277(3):E513-20. PubMed ID: 10484364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential regulation of amino acid exchange and protein dynamics across splanchnic and skeletal muscle beds by insulin in healthy human subjects.
    Meek SE; Persson M; Ford GC; Nair KS
    Diabetes; 1998 Dec; 47(12):1824-35. PubMed ID: 9836512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical stimulation and amino acid and ammonia metabolism in the canine gastrocnemius muscle.
    MacLean DA; Barclay JK; Graham TE
    Am J Physiol; 1995 Mar; 268(3 Pt 2):R759-70. PubMed ID: 7900920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organ clearance of tyrosyl-arginine and its effect on amino acid metabolism in young sheep.
    Kee AJ; Smith RC
    Metabolism; 1993 Aug; 42(8):958-66. PubMed ID: 8345819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.