These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 7783839)
21. Ginsenosides are potent and selective inhibitors of some calmodulin-dependent phosphodiesterase isozymes. Sharma RK; Kalra J Biochemistry; 1993 May; 32(19):4975-8. PubMed ID: 8388250 [TBL] [Abstract][Full Text] [Related]
22. Zinc- and iron-dependent cytosolic metallo-beta-lactamase domain proteins exhibit similar zinc-binding affinities, independent of an atypical glutamate at the metal-binding site. Schilling O; Vogel A; Kostelecky B; Natal da Luz H; Spemann D; Späth B; Marchfelder A; Tröger W; Meyer-Klaucke W Biochem J; 2005 Jan; 385(Pt 1):145-53. PubMed ID: 15324305 [TBL] [Abstract][Full Text] [Related]
23. Rat intestinal phosphodiesterase II. Properties of the highly purified enzyme and its inactivation by iodoacetic acid. Flanagan PR; Zbarsky SH Biochim Biophys Acta; 1977 Jan; 480(1):204-18. PubMed ID: 12824 [TBL] [Abstract][Full Text] [Related]
24. Zinc binding and its trapping by allosteric transition in glucosamine-6-phosphate deaminase from Escherichia coli. Altamirano MM; Calcagno M Biochim Biophys Acta; 1990 May; 1038(3):291-4. PubMed ID: 2111170 [TBL] [Abstract][Full Text] [Related]
25. KS-505a, an isoform-selective inhibitor of calmodulin-dependent cyclic nucleotide phosphodiesterase. Ichimura M; Eiki R; Osawa K; Nakanishi S; Kase H Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):311-6. PubMed ID: 8645223 [TBL] [Abstract][Full Text] [Related]
27. [cGMP-activated phosphodiesterase from human brain: kinetic and regulatory properties]. Bobruskin ID; Medvedeva MV; Severin ES Biokhimiia; 1991 Jun; 56(6):999-1010. PubMed ID: 1657216 [TBL] [Abstract][Full Text] [Related]
28. Multiple forms of the enzyme glycerophosphodiesterase are present in human brain. Ross BM; Sherwin AL; Kish SJ Lipids; 1995 Dec; 30(12):1075-81. PubMed ID: 8614297 [TBL] [Abstract][Full Text] [Related]
29. Enhancement and inhibition of snake venom phosphodiesterase activity by lysophospholipids. Mamillapalli R; Haimovitz R; Ohad M; Shinitzky M FEBS Lett; 1998 Oct; 436(2):256-8. PubMed ID: 9781690 [TBL] [Abstract][Full Text] [Related]
30. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Hernandez Valladares M; Felici A; Weber G; Adolph HW; Zeppezauer M; Rossolini GM; Amicosante G; Frère JM; Galleni M Biochemistry; 1997 Sep; 36(38):11534-41. PubMed ID: 9298974 [TBL] [Abstract][Full Text] [Related]
31. Purification and properties of a glycerophosphocholine phosphodiesterase from bovine brain myelin. Yuan J; Kanfer JN Neurochem Res; 1994 Jan; 19(1):43-8. PubMed ID: 8139761 [TBL] [Abstract][Full Text] [Related]
32. Metal ion induced allosteric transition in the catalytic activity of an artificial phosphodiesterase. Takebayashi S; Shinkai S; Ikeda M; Takeuchi M Org Biomol Chem; 2008 Feb; 6(3):493-9. PubMed ID: 18219419 [TBL] [Abstract][Full Text] [Related]
33. Zinc and ifenprodil allosterically inhibit two separate polyamine-sensitive sites at N-methyl-D-aspartate receptor complex. Berger ML; Rebernik P J Pharmacol Exp Ther; 1999 Jun; 289(3):1584-91. PubMed ID: 10336556 [TBL] [Abstract][Full Text] [Related]
34. Inhibitors of phosphodiesterase IV (PDE IV) increase acid secretion in rabbit isolated gastric glands: correlation between function and interaction with a high-affinity rolipram binding site. Barnette MS; Grous M; Cieslinski LB; Burman M; Christensen SB; Torphy TJ J Pharmacol Exp Ther; 1995 Jun; 273(3):1396-402. PubMed ID: 7791113 [TBL] [Abstract][Full Text] [Related]
35. Mapping the functional domains of human recombinant phosphodiesterase 4A: structural requirements for catalytic activity and rolipram binding. Jacobitz S; McLaughlin MM; Livi GP; Burman M; Torphy TJ Mol Pharmacol; 1996 Oct; 50(4):891-9. PubMed ID: 8863835 [TBL] [Abstract][Full Text] [Related]
36. Autotaxin inhibition: development and application of computational tools to identify site-selective lead compounds. Norman DD; Ibezim A; Scott WE; White S; Parrill AL; Baker DL Bioorg Med Chem; 2013 Sep; 21(17):5548-60. PubMed ID: 23816044 [TBL] [Abstract][Full Text] [Related]
37. Regulation of cyclic nucleotide phosphodiesterases of cerebral cortex by Ca2+ and cyclic GMP. Filburn CR; Colpo F; Sacktor B J Neurochem; 1978 Feb; 30(2):337-46. PubMed ID: 203661 [No Abstract] [Full Text] [Related]
38. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Zalatan JG; Fenn TD; Brunger AT; Herschlag D Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180 [TBL] [Abstract][Full Text] [Related]
40. A Unique Sub-Pocket for Improvement of Selectivity of Phosphodiesterase Inhibitors in CNS. Wang Y; Ke H Adv Neurobiol; 2017; 17():463-471. PubMed ID: 28956343 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]