BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 7783884)

  • 1. Using motion perimetry to detect visual field defects in patients with idiopathic intracranial hypertension: a comparison with conventional automated perimetry.
    Wall M; Montgomery EB
    Neurology; 1995 Jun; 45(6):1169-75. PubMed ID: 7783884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random dot motion perimetry in patients with glaucoma and in normal subjects.
    Wall M; Ketoff KM
    Am J Ophthalmol; 1995 Nov; 120(5):587-96. PubMed ID: 7485360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion perimetry identifies nerve fiber bundlelike defects in ocular hypertension.
    Wall M; Jennisch CS; Munden PM
    Arch Ophthalmol; 1997 Jan; 115(1):26-33. PubMed ID: 9006421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Random dot motion stimuli are more sensitive than light stimuli for detection of visual field loss in ocular hypertension patients.
    Wall M; Jennisch CS
    Optom Vis Sci; 1999 Aug; 76(8):550-7. PubMed ID: 10472961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threshold Static Automated Perimetry of the Full Visual Field in Idiopathic Intracranial Hypertension.
    Wall M; Subramani A; Chong LX; Galindo R; Turpin A; Kardon RH; Thurtell MJ; Bailey JA; Marin-Franch I
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):1898-1905. PubMed ID: 31042797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated perimetry detects visual field loss before manual Goldmann perimetry.
    Katz J; Tielsch JM; Quigley HA; Sommer A
    Ophthalmology; 1995 Jan; 102(1):21-6. PubMed ID: 7831036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-wavelength automated perimetry in neuro-ophthalmologic disorders.
    Keltner JL; Johnson CA
    Arch Ophthalmol; 1995 Apr; 113(4):475-81. PubMed ID: 7710398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability of high-pass resolution perimetry in normals and patients with idiopathic intracranial hypertension.
    Wall M; Lefante J; Conway M
    Invest Ophthalmol Vis Sci; 1991 Nov; 32(12):3091-5. PubMed ID: 1938283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rarebit perimetry in the evaluation of visual field defects in idiopathic intracranial hypertension.
    Celebisoy N; Oztürk T; Köse T
    Eur J Ophthalmol; 2010; 20(4):756-62. PubMed ID: 20306442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of visual field defects using matrix perimetry and standard achromatic perimetry.
    Patel A; Wollstein G; Ishikawa H; Schuman JS
    Ophthalmology; 2007 Mar; 114(3):480-7. PubMed ID: 17123623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of sensitivity and specificity of spatial resolution and Humphrey automated perimetry in pseudotumor cerebri patients and normal subjects.
    Wall M; Conway MD; House PH; Allely R
    Invest Ophthalmol Vis Sci; 1991 Dec; 32(13):3306-12. PubMed ID: 1748561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of 30-2 Standard and Fast programs of Swedish Interactive Threshold Algorithm of Humphrey Field Analyzer for perimetry in patients with intracranial tumors.
    Singh MD; Jain K
    Indian J Ophthalmol; 2017 Nov; 65(11):1198-1202. PubMed ID: 29133651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual loss in pseudotumor cerebri. Incidence and defects related to visual field strategy.
    Wall M; George D
    Arch Neurol; 1987 Feb; 44(2):170-5. PubMed ID: 3813933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Component perimetry: a fast method to detect visual field defects caused by brain lesions.
    Bachmann G; Fahle M
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2870-86. PubMed ID: 10967040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion perimetry in anisometropic amblyopia: elevated size thresholds extend into the midperiphery.
    Donahue SP; Wall M; Stanek KE
    J AAPOS; 1998 Apr; 2(2):94-101. PubMed ID: 10530970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flicker defined form perimetry in glaucoma suspects with normal achromatic visual fields.
    Reznicek L; Lamparter J; Vogel M; Kampik A; Hirneiß C
    Curr Eye Res; 2015 Jul; 40(7):683-9. PubMed ID: 25207744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-doubling technology perimetry for detection of the development of visual field defects in glaucoma suspect eyes: a prospective study.
    Liu S; Yu M; Weinreb RN; Lai G; Lam DS; Leung CK
    JAMA Ophthalmol; 2014 Jan; 132(1):77-83. PubMed ID: 24177945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial relationship of motion automated perimetry and optic disc topography in patients with glaucomatous optic neuropathy.
    Bosworth CF; Sample PA; Williams JM; Zangwill L; Lee B; Weinreb RN
    J Glaucoma; 1999 Oct; 8(5):281-9. PubMed ID: 10529926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of tangent screen, goldmann, and humphrey perimetry in the detection and localization of occipital lesions.
    Wong AM; Sharpe JA
    Ophthalmology; 2000 Mar; 107(3):527-44. PubMed ID: 10711892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.