These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription. Erkine AM; Adams CC; Diken T; Gross DS Mol Cell Biol; 1996 Dec; 16(12):7004-17. PubMed ID: 8943356 [TBL] [Abstract][Full Text] [Related]
3. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. Gross DS; Adams CC; Lee S; Stentz B EMBO J; 1993 Oct; 12(10):3931-45. PubMed ID: 8404861 [TBL] [Abstract][Full Text] [Related]
4. The upstream sequences of the HSP82 and HSC82 genes of Saccharomyces cerevisiae: regulatory elements and nucleosome positioning motifs. Erkine AM; Szent-Gyorgyi C; Simmons SF; Gross DS Yeast; 1995 May; 11(6):573-80. PubMed ID: 7645348 [TBL] [Abstract][Full Text] [Related]
5. Promoter function and in situ protein/DNA interactions upstream of the yeast HSP90 heat shock genes. Gross DS; Adams CC; English KE; Collins KW; Lee S Antonie Van Leeuwenhoek; 1990 Oct; 58(3):175-86. PubMed ID: 2256678 [TBL] [Abstract][Full Text] [Related]
6. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. Gross DS; English KE; Collins KW; Lee SW J Mol Biol; 1990 Dec; 216(3):611-31. PubMed ID: 2175361 [TBL] [Abstract][Full Text] [Related]
7. Uncoupling gene activity from chromatin structure: promoter mutations can inactivate transcription of the yeast HSP82 gene without eliminating nucleosome-free regions. Lee MS; Garrard WT Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9166-70. PubMed ID: 1409619 [TBL] [Abstract][Full Text] [Related]
9. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. Tanaka S; Livingstone-Zatchej M; Thoma F J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475 [TBL] [Abstract][Full Text] [Related]
10. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro. Erkine AM; Magrogan SF; Sekinger EA; Gross DS Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851 [TBL] [Abstract][Full Text] [Related]
11. A bipartite operator interacts with a heat shock element to mediate early meiotic induction of Saccharomyces cerevisiae HSP82. Szent-Gyorgyi C Mol Cell Biol; 1995 Dec; 15(12):6754-69. PubMed ID: 8524241 [TBL] [Abstract][Full Text] [Related]
12. Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene. Lascaris RF; Groot E; Hoen PB; Mager WH; Planta RJ Nucleic Acids Res; 2000 Mar; 28(6):1390-6. PubMed ID: 10684934 [TBL] [Abstract][Full Text] [Related]
14. Conditional silencing: the HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene. Lee S; Gross DS Mol Cell Biol; 1993 Feb; 13(2):727-38. PubMed ID: 8423797 [TBL] [Abstract][Full Text] [Related]
15. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Kohno K; Normington K; Sambrook J; Gething MJ; Mori K Mol Cell Biol; 1993 Feb; 13(2):877-90. PubMed ID: 8423809 [TBL] [Abstract][Full Text] [Related]
16. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae. Pederson DS; Fidrych T Mol Cell Biol; 1994 Jan; 14(1):189-99. PubMed ID: 8264586 [TBL] [Abstract][Full Text] [Related]
17. Chromatin structure of the 5' flanking region of the yeast LEU2 gene. Martínez-García JF; Estruch F; Pérez-Ortín JE Mol Gen Genet; 1989 Jun; 217(2-3):464-70. PubMed ID: 10215493 [TBL] [Abstract][Full Text] [Related]
18. Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence. Li B; Reese JC J Biol Chem; 2001 Sep; 276(36):33788-97. PubMed ID: 11448965 [TBL] [Abstract][Full Text] [Related]
19. [Structural and functional chromatin organization of the SUP35 gene in Saccharomyces cerevisiae yeast]. Riabinkova NA; Vodop'ianova LG; Samsonova MG; Miasikova EM; Osipova TN Genetika; 1997 Apr; 33(4):451-7. PubMed ID: 9206662 [TBL] [Abstract][Full Text] [Related]
20. High-resolution mapping of DNase I-hypersensitive sites of Drosophila heat shock genes in Drosophila melanogaster and Saccharomyces cerevisiae. Costlow N; Lis JT Mol Cell Biol; 1984 Sep; 4(9):1853-63. PubMed ID: 6436689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]