These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42 related articles for article (PubMed ID: 7785084)
1. [Role of S'2-stimulation of serine proteases in regulation of proteolysis]. Verevka SV; Sytnik AI; Kolodzeĭskaia MV Ukr Biokhim Zh (1978); 1994; 66(6):32-8. PubMed ID: 7785084 [TBL] [Abstract][Full Text] [Related]
2. [Hydrophobic interactions of serine proteases with low molecular compounds: role of the S'2-site in substrate activation and interaction with serpines]. Verevka SV; Shulezhko LA; Kolodzeĭskaia MV Ukr Biokhim Zh (1978); 1991; 63(5):45-51. PubMed ID: 1788873 [TBL] [Abstract][Full Text] [Related]
3. Utilization of biotinylated diphenyl phosphonates for disclosure of serine proteases. Hawthorne S; Hamilton R; Walker BJ; Walker B Anal Biochem; 2004 Mar; 326(2):273-5. PubMed ID: 15003568 [No Abstract] [Full Text] [Related]
4. [Energy-dependent selective intracellular proteolysis. Structure, active sites and specificity of ATP-dependent proteinases]. Rotanova TV Vopr Med Khim; 2001; 47(1):3-19. PubMed ID: 11385997 [TBL] [Abstract][Full Text] [Related]
6. Dimethylthiazolidine carboxylic acid as a rigid p3 unit in inhibitors of serine proteases: application to two targets. Kawai SH; Aubry N; Duceppe JS; Llinàs-Brunet M; LaPlante SR Chem Biol Drug Des; 2009 Nov; 74(5):517-22. PubMed ID: 19780760 [TBL] [Abstract][Full Text] [Related]
7. Proteolysis of insulin-like growth factor binding protein-3 in serum from pregnant, non-pregnant and fetal rats by matrix metalloproteinases and serine proteases. Wu HB; Lee CY; Rechler MM Horm Metab Res; 1999; 31(2-3):186-91. PubMed ID: 10226801 [TBL] [Abstract][Full Text] [Related]
8. [Quantum chemical study of the "catalytic triad" of serine proteases]. Voĭtiuk AA; Vasil'ev VV Mol Biol (Mosk); 1987; 21(3):807-13. PubMed ID: 3477691 [TBL] [Abstract][Full Text] [Related]
9. Design and synthesis of selective keto-1,2,4-oxadiazole-based tryptase inhibitors. Palmer JT; Rydzewski RM; Mendonca RV; Sperandio D; Spencer JR; Hirschbein BL; Lohman J; Beltman J; Nguyen M; Liu L Bioorg Med Chem Lett; 2006 Jul; 16(13):3434-9. PubMed ID: 16644215 [TBL] [Abstract][Full Text] [Related]
10. ATP-dependent proteases in prokaryotic and eukaryotic cells. Goldberg AL Semin Cell Biol; 1990 Dec; 1(6):423-32. PubMed ID: 2103893 [TBL] [Abstract][Full Text] [Related]
11. On the stability of tetrahedral intermediates within the active sites of serine and cysteine proteases. Fastrez J Eur J Biochem; 1983 Sep; 135(2):339-41. PubMed ID: 6350001 [TBL] [Abstract][Full Text] [Related]
12. [Mechanism of enzymatic catalysis. Quantum chemistry study of models of serine proteases]. Voĭtiuk AA Mol Biol (Mosk); 1987; 21(4):882-7. PubMed ID: 3309621 [TBL] [Abstract][Full Text] [Related]
13. More than destructive: neutrophil-derived serine proteases in cytokine bioactivity control. Bank U; Ansorge S J Leukoc Biol; 2001 Feb; 69(2):197-206. PubMed ID: 11272269 [TBL] [Abstract][Full Text] [Related]
14. Protease nexins: cell-secreted proteins that mediate the binding, internalization, and degradation of regulatory serine proteases. Knauer DJ; Thompson JA; Cunningham DD J Cell Physiol; 1983 Dec; 117(3):385-96. PubMed ID: 6317700 [TBL] [Abstract][Full Text] [Related]
16. [Hydrophobic interactions of serine proteases with low molecular weight compounds: partial effector displacement from the activated enzyme by the substrate]. Verevka SV; Kolodzeĭskaia MV Ukr Biokhim Zh (1978); 1992; 64(5):100-3. PubMed ID: 1462363 [TBL] [Abstract][Full Text] [Related]
17. Stereo- and sequence specificity of serine proteases in peptide synthesis. Kasche V; Michaelis G; Wiesemann T Biomed Biochim Acta; 1991; 50(10-11):S38-43. PubMed ID: 1820058 [TBL] [Abstract][Full Text] [Related]
18. Structural organization in the serine proteases. I. Macromolecular specificity in limited proteolysis. Liebman MN Enzyme; 1986; 36(1-2):115-40. PubMed ID: 3539587 [TBL] [Abstract][Full Text] [Related]
19. Analysis of catalytic mechanism of serine proteases. Viability of the ring-flip hypothesis. Scheiner S J Phys Chem B; 2008 Jun; 112(22):6837-46. PubMed ID: 18461994 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure. Selwood T; McCaslin DR; Schechter NM Biochemistry; 1998 Sep; 37(38):13174-83. PubMed ID: 9748324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]